Periodicity and almost periodicity in Markov lattice semigroups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 829-839
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] W. ARENDT - A. GRABOSCH - G. GREINER - U. GROH - H. P. LOTZ - U. MOUS-TAKAS - R. NAGEL (ed.) - F. NEUBRANDER - U. SCHLOTTERBECK, "One-parameter Semigroups of Positive Operators", Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin/Heidelberg/New York/ Tokyo, 1986. MR839450
- [2] E. Hille - R.S. Phillips, "Functional Analysis and Semigroups", Amer. Math. Soc. Coll. Publ., Vol. 31, Providence R.I., 1957. Zbl0078.10004MR89373
- [3] A. Pazy, "Semigroups of linear operators and applications to partial differential equations", Springer-Verlag, New York/ Berlin/Heidelberg/ Tokyo, 1983. Zbl0516.47023MR710486
- [4] E. Vesentini, Conservative Operators, in : P. Marcellini, G. Talenti and E. Vesentini (ed.) " Topics in Partial Differential Equations and Applications", Marcel Dekker, New York/BaselHong Kong, 1996, 303-311. Zbl0841.47024MR1371602
- [5] E. Vesentini, Spectral Properties of Weakly Asymptotically Almost Periodic Semigroups, Advances in Math.128 (1997), 217-241. Zbl0882.22002MR1454398
- [6] P. Walters, "An Introduction to Ergodic Theory", Springer-Verlag, New York/Heidelberg/ Berlin, 1981. Zbl0475.28009MR648108