Homoclinic and periodic orbits for hamiltonian systems
Patricio L. Felmer; Elves A. de B. Silva
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 26, Issue: 2, page 285-301
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFelmer, Patricio L., and Silva, Elves A. de B.. "Homoclinic and periodic orbits for hamiltonian systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 285-301. <http://eudml.org/doc/84329>.
@article{Felmer1998,
author = {Felmer, Patricio L., Silva, Elves A. de B.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {homoclinic solutions; periodic solutions; Hamiltonian systems; Morse index; minimax critical points},
language = {eng},
number = {2},
pages = {285-301},
publisher = {Scuola normale superiore},
title = {Homoclinic and periodic orbits for hamiltonian systems},
url = {http://eudml.org/doc/84329},
volume = {26},
year = {1998},
}
TY - JOUR
AU - Felmer, Patricio L.
AU - Silva, Elves A. de B.
TI - Homoclinic and periodic orbits for hamiltonian systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 285
EP - 301
LA - eng
KW - homoclinic solutions; periodic solutions; Hamiltonian systems; Morse index; minimax critical points
UR - http://eudml.org/doc/84329
ER -
References
top- [1] A. Ambrosetti - P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063MR370183
- [2] A. Ambrosetti - V. Coti-Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1987), 242-271. Zbl0623.58013MR898050
- [3] V. Coti-Zelati - I. Ekeland - P.L. Lions, Index estimates and critical points offunctional not satisfying Palais Smale, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 17 (1990), 569-581. Zbl0725.58019MR1093709
- [4] H. Hofer, The topological degree at a critical point of mountain pass type, Proc. Sympos. Pure Math.45 (1986), 501-509. Zbl0608.58013MR843584
- [5] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
- [6] P. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A114 (1990), 33-38. Zbl0705.34054MR1051605
- [7] P. Rabinowitz, Critical point theory and applications to differential equations: a survey, in: "Topological Nonlinear Analysis. Degree, Singularity and variations", Matzeu and Vignoli Eds., Birkäuser, 1995. Zbl0823.58009MR1322328
- [8] S. Solimini, Morse index estimates in minimax theorems, Manuscripta Math.63 (1989), 421-454. Zbl0685.58010MR991264
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.