Homoclinic and periodic orbits for hamiltonian systems

Patricio L. Felmer; Elves A. de B. Silva

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 2, page 285-301
  • ISSN: 0391-173X

How to cite

top

Felmer, Patricio L., and Silva, Elves A. de B.. "Homoclinic and periodic orbits for hamiltonian systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 285-301. <http://eudml.org/doc/84329>.

@article{Felmer1998,
author = {Felmer, Patricio L., Silva, Elves A. de B.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {homoclinic solutions; periodic solutions; Hamiltonian systems; Morse index; minimax critical points},
language = {eng},
number = {2},
pages = {285-301},
publisher = {Scuola normale superiore},
title = {Homoclinic and periodic orbits for hamiltonian systems},
url = {http://eudml.org/doc/84329},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Felmer, Patricio L.
AU - Silva, Elves A. de B.
TI - Homoclinic and periodic orbits for hamiltonian systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 285
EP - 301
LA - eng
KW - homoclinic solutions; periodic solutions; Hamiltonian systems; Morse index; minimax critical points
UR - http://eudml.org/doc/84329
ER -

References

top
  1. [1] A. Ambrosetti - P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063MR370183
  2. [2] A. Ambrosetti - V. Coti-Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1987), 242-271. Zbl0623.58013MR898050
  3. [3] V. Coti-Zelati - I. Ekeland - P.L. Lions, Index estimates and critical points offunctional not satisfying Palais Smale, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 17 (1990), 569-581. Zbl0725.58019MR1093709
  4. [4] H. Hofer, The topological degree at a critical point of mountain pass type, Proc. Sympos. Pure Math.45 (1986), 501-509. Zbl0608.58013MR843584
  5. [5] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  6. [6] P. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A114 (1990), 33-38. Zbl0705.34054MR1051605
  7. [7] P. Rabinowitz, Critical point theory and applications to differential equations: a survey, in: "Topological Nonlinear Analysis. Degree, Singularity and variations", Matzeu and Vignoli Eds., Birkäuser, 1995. Zbl0823.58009MR1322328
  8. [8] S. Solimini, Morse index estimates in minimax theorems, Manuscripta Math.63 (1989), 421-454. Zbl0685.58010MR991264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.