Index estimates and critical points of functionals not satisfying Palais-Smale

Vittorio Coti Zelati; Ivar Ekeland; Pierre-Louis Lions

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 4, page 569-581
  • ISSN: 0391-173X

How to cite

top

Coti Zelati, Vittorio, Ekeland, Ivar, and Lions, Pierre-Louis. "Index estimates and critical points of functionals not satisfying Palais-Smale." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.4 (1990): 569-581. <http://eudml.org/doc/84087>.

@article{CotiZelati1990,
author = {Coti Zelati, Vittorio, Ekeland, Ivar, Lions, Pierre-Louis},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Palais-Smale condition; periodic solutions; Hamiltonian equations},
language = {eng},
number = {4},
pages = {569-581},
publisher = {Scuola normale superiore},
title = {Index estimates and critical points of functionals not satisfying Palais-Smale},
url = {http://eudml.org/doc/84087},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Coti Zelati, Vittorio
AU - Ekeland, Ivar
AU - Lions, Pierre-Louis
TI - Index estimates and critical points of functionals not satisfying Palais-Smale
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 4
SP - 569
EP - 581
LA - eng
KW - Palais-Smale condition; periodic solutions; Hamiltonian equations
UR - http://eudml.org/doc/84087
ER -

References

top
  1. [ACZ] A. Ambrosetti - V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. IHP Analyse non linéaire3 (1987), 242-275. Zbl0623.58013
  2. [AM] A. Ambrosetti - G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann.255 (1981), 405-421. Zbl0466.70022
  3. [AR] A. Ambrosetti - P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063
  4. [B] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. IHP Analyse non linéaire1 (1984), 379-400. Zbl0561.58006
  5. [C1] F. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proceedings A.M.S.76 (1979), 186-189. Zbl0434.70022
  6. [C2] F. Clarke, Periodic solutions of Hamiltonian inclusions, J. Differential Equations40 (1981), 1-6. Zbl0461.34030
  7. [CE] F. Clarke - I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math.33 (1980), 103-116. Zbl0403.70016
  8. [E1] I. Ekeland, Periodic solutions of Hamiltonian systems and a theorem of P. Rabinowitz, J. Differential Equations34 (1979), 523-534. Zbl0446.70019
  9. [E2] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Procedings of Symposia in Pure Mathematics45 (1986), 395-423. Zbl0596.34023
  10. [EH] I. Ekeland - H. Hofer, Periodic solutions with prescribed period for convex autonomous Hamiltonian systems, Inventiones Math.81 (1985), 2155-2188. Zbl0594.58035
  11. [GM1] M. Girardi - M. Matzeu, Some results on solutions of minimal period to superquadratic Hamiltonian equations, Nonlinear Analysis TMA7 (1983), 475-482. Zbl0512.70021
  12. [GM2] M. Girardi - M. Matzeu, Solutions of minimal period for a class of non-convex Hamiltonian systems and applications to the fixed energy problem, Nonlinear Analysis TMA10 (1986), 371-382. Zbl0607.70018
  13. [H1] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain pass theorem, J. London Math. Soc.31 (1985), 566-570. Zbl0573.58007
  14. [L] P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys.103 (1987), 33-97. Zbl0618.35111
  15. [R1] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math.31 (1978), 157-184. Zbl0358.70014
  16. [R2] P. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations50 (1983), 33-48. Zbl0528.58028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.