Estimations du type Nevanlinna pour les applications non dégénérées de n dans n

Myriam Ounaies

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 4, page 737-748
  • ISSN: 0391-173X

How to cite

top

Ounaies, Myriam. "Estimations du type Nevanlinna pour les applications non dégénérées de $\mathbb {C}^n$ dans $\mathbb {C}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1998): 737-748. <http://eudml.org/doc/84346>.

@article{Ounaies1998,
author = {Ounaies, Myriam},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {meromorphic functions; Nevanlinna theory; holomorphic non-degenerate mapping; inevitable set; value distribution theory in higher dimensions},
language = {fre},
number = {4},
pages = {737-748},
publisher = {Scuola normale superiore},
title = {Estimations du type Nevanlinna pour les applications non dégénérées de $\mathbb \{C\}^n$ dans $\mathbb \{C\}^n$},
url = {http://eudml.org/doc/84346},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Ounaies, Myriam
TI - Estimations du type Nevanlinna pour les applications non dégénérées de $\mathbb {C}^n$ dans $\mathbb {C}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 737
EP - 748
LA - fre
KW - meromorphic functions; Nevanlinna theory; holomorphic non-degenerate mapping; inevitable set; value distribution theory in higher dimensions
UR - http://eudml.org/doc/84346
ER -

References

top
  1. [ 1 ] E. Bedford, Survey of pluripotential theory, Several complex variables: Proc. Mittag-Leffler Inst., 1987-88, edited by J. E. Fomaess, Math. Notes38 (1993), 48-97. Zbl0786.31001MR1207855
  2. [2] L. Bieberbach, Beispiel zweier ganzer Funktionen zweier komplexer variablen, welche eine schlichte volumtreue Abbildung des R4 auf einen Teil seiner selbst vermitteln, S.B. Preuss Akad. Wiss.14/15 (1933), 476-479. Zbl0007.21502JFM59.0344.02
  3. [3] S. Bochner - W.T. Martin, "Several complex variables", Princeton University Press, 1948. Zbl0041.05205MR27863
  4. [4] M. Cornalba - B. Shiffman, A counterexample to the "Transcendental Bezout problem ", Ann. of Math.96, 2 (1972), 402-406. Zbl0244.32006MR311937
  5. [5] P.G. Dixon - J. Esterle, Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon, Bull. Amer. math. Soc (N.S)15 (1986), 127-187. Zbl0608.32008MR854551
  6. [6] L. Gruman, Value distribution for holomorphic maps in C n, Math. Ann.245 (1978), 199-218. Zbl0421.32028MR553341
  7. [7] L. Gruman, L'image d'une application holomorphe, Ann. Fac. Sci. Toulouse Math.12 (1991), 75-100. Zbl0749.32016MR1189435
  8. [8] R. Nevanlinna, " Analytic functions", Springer-Verlag, BerlinHeidelberg, NewYork. Zbl0199.12501MR279280
  9. [9] M. Ounaïes, Estimations du type Nevanlinna pour les applications holomorphes de Cn dans Cn, Ann. Sci. Éc. Norm. Sup.30 (1997), 797-819. Zbl0910.32028MR1476296
  10. [10] J.P. Rosay - W. Rudin, Holomorphic maps from Cn to Cn, Trans. Amer. math. Soc.310 (1988), 47-86. Zbl0708.58003MR929658
  11. [11] J.L. Stehlé, Plongements du disque dans C2, Séminaire P. Lelong (Analyse)Lecture Notes in Math.275 (1970), 119-130. Zbl0245.32007MR397012

NotesEmbed ?

top

You must be logged in to post comments.