Commuting holomorphic maps in strongly convex domains
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 1, page 131-144
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBracci, Filippo. "Commuting holomorphic maps in strongly convex domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 131-144. <http://eudml.org/doc/84350>.
@article{Bracci1998,
author = {Bracci, Filippo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {commuting holomorphic maps; strongly convex domains},
language = {eng},
number = {1},
pages = {131-144},
publisher = {Scuola normale superiore},
title = {Commuting holomorphic maps in strongly convex domains},
url = {http://eudml.org/doc/84350},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Bracci, Filippo
TI - Commuting holomorphic maps in strongly convex domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 131
EP - 144
LA - eng
KW - commuting holomorphic maps; strongly convex domains
UR - http://eudml.org/doc/84350
ER -
References
top- [ 1 ] M. Abate, "Iteration theory of holomorphic maps on taut manifolds", Mediterranean Press, Rende, Cosenza 1989. Zbl0747.32002MR1098711
- [2] M. Abate, The Lindelöf principle and the angular derivative in strongly convex domains, J. Anal. Math.54 (1990), 189-228. Zbl0694.32015MR1041181
- [3] M. Abate, Angular derivatives in strongly pseudoconvex domains, Proc. Symp. in Pure Math.52 (1991), Part 2, 23-40. Zbl0741.32004MR1128532
- [4] M. Abate, J.P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc.112 (1991), 503-512. Zbl0724.32012MR1065938
- [5] D.F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc.37 (1973), 114-120. Zbl0251.30009MR308378
- [6] F. Bracci, Common fixed points of commuting holomorphic maps in the unit ball of Cn, To appear in Proc. Amer. Math. Soc. Zbl0916.58006MR1610920
- [7] C.H. Chang, M.C. Hu, H.P. Lee, Extremal analytic discs with prescribed boundary data, Trans. Amer. Math. Soc.310, 1 (1988), 355-369. Zbl0708.32006MR930081
- [8] J.A. Cima, S.G. Krantz, The Lindelöf principle and normalfunctions of several complex variables, Duke Math. J.50 (1983), 303-328. Zbl0522.32003MR700143
- [9] E.M. Čirca, The theorems of Lindelöf and Fatou in C n, Math. USSR Sbornik21, 4 (1973), 619-639. Zbl0297.32001
- [10] C. De Fabritiis, Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc.124 (1996), 3027-3037. Zbl0866.32004MR1371120
- [11] C. De Fabritiis, G. Gentili, On holomorphic maps which commute with hyperbolic automorphisms, to appear in Adv. Math. Zbl0976.32014MR1695235
- [12] A. Denjoy, Sur l'itération des fonctions analytiques, C.R. Acad. Sci. Paris182 (1926), 255-257. Zbl52.0309.04JFM52.0309.04
- [13] M.H. Heins, A generalization of the Aumann-CarathÇodory "Starrheitssatz", Duke Math. J.8 (1941), 312-316. Zbl0025.17301MR4912JFM67.0283.02
- [14] M. Jarnicki, P. Pflug, "Invariant distances and metrics in complex analysis", W. de Gruyter, Berlin-New York, 1993. Zbl0789.32001MR1242120
- [15] L. Lempert, La métrique de Kobayashi et la representation des domaines sur la boule, Bull. Soc. Math. France109 (1981), 427-474. Zbl0492.32025MR660145
- [16] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math.8 (1982), 257-261. Zbl0509.32015MR690838
- [17] A.L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc.15 (1964), 703-706. Zbl0129.29104MR165508
- [ 18] E.M. Stein, "Boundary behaviour of holomorphic functions of several complex variables", Princeton University Press, Princeton, 1972. Zbl0242.32005MR473215
- [19] T.J. Suffridge, Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J.21 (1974), 309-314. Zbl0333.47026MR367661
- [20] J. Wolff, Sur l'iteration des fonctions bornées, C.R. Acad. Sci. Paris (1926), 200-201. Zbl52.0309.03JFM52.0309.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.