Inégalité de Vojta en dimension supérieure
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 1, page 101-151
- ISSN: 0391-173X
Access Full Article
topHow to cite
topRémond, Gaël. "Inégalité de Vojta en dimension supérieure." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 101-151. <http://eudml.org/doc/84398>.
@article{Rémond2000,
author = {Rémond, Gaël},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Vojta inequality; abelian variety; Faltings theorem; Lang Conjecture; Neron-Tate height},
language = {fre},
number = {1},
pages = {101-151},
publisher = {Scuola normale superiore},
title = {Inégalité de Vojta en dimension supérieure},
url = {http://eudml.org/doc/84398},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Rémond, Gaël
TI - Inégalité de Vojta en dimension supérieure
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 101
EP - 151
LA - fre
KW - Vojta inequality; abelian variety; Faltings theorem; Lang Conjecture; Neron-Tate height
UR - http://eudml.org/doc/84398
ER -
References
top- [B1] E. Bombieri, The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci.17 (1990) 615-640. — Erratum. Ann. Scuola Norm. Sup. Pisa Cl. Sci.18 (1991) 473. Zbl0763.14007MR1093712
- [B2] E. Bombieri, On G-functions, In: "Recent progress in analytic number theory", vol. II (Durham1979), H. Halberstam et C. Hooley (eds), Academic Press, 1981, pp. 1-67. Zbl0461.10031MR637359
- [BGS] J.-B. Bost - H. Gillet - C. Soulé, Heights ofprojective varieties and positive Green forms, J. Amer. Math. Soc.7 (1994) 903-1027. Zbl0973.14013MR1260106
- [Ch] M. Chardin, "Contributions à l'algèbre commutative effective et à la théorie de l'élimination", Thèse. Univ. Paris VI, 1990.
- [dD] T. De Diego, Points rationnels sur les familles de courbes de genre au moins 2, J. of Number Theory67 (1997) 85-114. Zbl0896.11025MR1485428
- [EE] B. Edixhoven - J.-H. Evertse, "Diophantine approximation and abelian varieties", Lecture Notes in Mathematics1566, Springer-Verlag, Berlin, 1994. Zbl0811.14019MR1288998
- [Fb] C. Faber, Geometric part of Faltings's proof, In: "[EE]", Chapitre IX, pp. 83-91. Zbl0811.14023MR1289007
- [F1] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math.133 (1991) 549-576. Zbl0734.14007MR1109353
- [F2] G. Faltings, The general case of S. Lang's conjecture, In: "Barsotti Symposium in Algebraic Geometry" (Abano Terme, 1991). Perspect. Math. 15. Academic Press, San Diego, 1994, pp. 175-182. Zbl0823.14009MR1307396
- [Ha] R. Hartshorne, "Algebraic Geometry", Springer-Verlag, 1977. Zbl0367.14001MR463157
- [H1]] M. Hindry, Autour d'une conjecture de Serge Lang, Invent. Math.94 (1988) 575-603. Zbl0638.14026MR969244
- [H2] M. Hindry, Sur les conjectures de Mordell et de Lang [d'après Vojta, Faltings et Bombieri], Astérisque209 (1992) 39-56. Zbl0792.14009MR1211002
- [M] D. Mumford, A remark on Mordell's conjecture, Amer. J. Math.87 (1965) 1007-1016. Zbl0151.27301MR186624
- [O] F. Oort, "The" general case of S. Lang's conjecture (after Faltings), In : "[EE]" Chapitre XIII, pp. 117-122. Zbl0811.14025
- [Ph] P. Philippon, Sur des hauteurs alternatives III, J. Math. Pures Appl.74 (1995) 345-365. Zbl0878.11025MR1341770
- [R1] G. Rémond, Géométrie diophantienne multiprojective, Chapitre 7 de : "Introduction to Algebraic Independence Theory", Y. Nesterenko - P. Philippon (eds), à paraître dans Lecture Notes in Mathematic s, Springer-Verlag. MR1837822
- [R2] G. Rémond, Sur le théorème du produit, XXIèmes Journées Arithmétiques, Rome, 1999.
- [V] P. Vojta, " Applications of arithmetic algebraic geometry to diophantine approximations ", Lecture Notes in Mathematics, 1553, Springer-Verlag. Zbl0846.14009MR1338861
- [ZS] O. Zariski - P. Samuel, "Commutative Algebra I", Van Nostrand, New York, 1958. Zbl0081.26501MR90581
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.