Inégalité de Vojta en dimension supérieure

Gaël Rémond

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 1, page 101-151
  • ISSN: 0391-173X

How to cite

top

Rémond, Gaël. "Inégalité de Vojta en dimension supérieure." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 101-151. <http://eudml.org/doc/84398>.

@article{Rémond2000,
author = {Rémond, Gaël},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Vojta inequality; abelian variety; Faltings theorem; Lang Conjecture; Neron-Tate height},
language = {fre},
number = {1},
pages = {101-151},
publisher = {Scuola normale superiore},
title = {Inégalité de Vojta en dimension supérieure},
url = {http://eudml.org/doc/84398},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Rémond, Gaël
TI - Inégalité de Vojta en dimension supérieure
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 101
EP - 151
LA - fre
KW - Vojta inequality; abelian variety; Faltings theorem; Lang Conjecture; Neron-Tate height
UR - http://eudml.org/doc/84398
ER -

References

top
  1. [B1] E. Bombieri, The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci.17 (1990) 615-640. — Erratum. Ann. Scuola Norm. Sup. Pisa Cl. Sci.18 (1991) 473. Zbl0763.14007MR1093712
  2. [B2] E. Bombieri, On G-functions, In: "Recent progress in analytic number theory", vol. II (Durham1979), H. Halberstam et C. Hooley (eds), Academic Press, 1981, pp. 1-67. Zbl0461.10031MR637359
  3. [BGS] J.-B. Bost - H. Gillet - C. Soulé, Heights ofprojective varieties and positive Green forms, J. Amer. Math. Soc.7 (1994) 903-1027. Zbl0973.14013MR1260106
  4. [Ch] M. Chardin, "Contributions à l'algèbre commutative effective et à la théorie de l'élimination", Thèse. Univ. Paris VI, 1990. 
  5. [dD] T. De Diego, Points rationnels sur les familles de courbes de genre au moins 2, J. of Number Theory67 (1997) 85-114. Zbl0896.11025MR1485428
  6. [EE] B. Edixhoven - J.-H. Evertse, "Diophantine approximation and abelian varieties", Lecture Notes in Mathematics1566, Springer-Verlag, Berlin, 1994. Zbl0811.14019MR1288998
  7. [Fb] C. Faber, Geometric part of Faltings's proof, In: "[EE]", Chapitre IX, pp. 83-91. Zbl0811.14023MR1289007
  8. [F1] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math.133 (1991) 549-576. Zbl0734.14007MR1109353
  9. [F2] G. Faltings, The general case of S. Lang's conjecture, In: "Barsotti Symposium in Algebraic Geometry" (Abano Terme, 1991). Perspect. Math. 15. Academic Press, San Diego, 1994, pp. 175-182. Zbl0823.14009MR1307396
  10. [Ha] R. Hartshorne, "Algebraic Geometry", Springer-Verlag, 1977. Zbl0367.14001MR463157
  11. [H1]] M. Hindry, Autour d'une conjecture de Serge Lang, Invent. Math.94 (1988) 575-603. Zbl0638.14026MR969244
  12. [H2] M. Hindry, Sur les conjectures de Mordell et de Lang [d'après Vojta, Faltings et Bombieri], Astérisque209 (1992) 39-56. Zbl0792.14009MR1211002
  13. [M] D. Mumford, A remark on Mordell's conjecture, Amer. J. Math.87 (1965) 1007-1016. Zbl0151.27301MR186624
  14. [O] F. Oort, "The" general case of S. Lang's conjecture (after Faltings), In : "[EE]" Chapitre XIII, pp. 117-122. Zbl0811.14025
  15. [Ph] P. Philippon, Sur des hauteurs alternatives III, J. Math. Pures Appl.74 (1995) 345-365. Zbl0878.11025MR1341770
  16. [R1] G. Rémond, Géométrie diophantienne multiprojective, Chapitre 7 de : "Introduction to Algebraic Independence Theory", Y. Nesterenko - P. Philippon (eds), à paraître dans Lecture Notes in Mathematic s, Springer-Verlag. MR1837822
  17. [R2] G. Rémond, Sur le théorème du produit, XXIèmes Journées Arithmétiques, Rome, 1999. 
  18. [V] P. Vojta, " Applications of arithmetic algebraic geometry to diophantine approximations ", Lecture Notes in Mathematics, 1553, Springer-Verlag. Zbl0846.14009MR1338861
  19. [ZS] O. Zariski - P. Samuel, "Commutative Algebra I", Van Nostrand, New York, 1958. Zbl0081.26501MR90581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.