Strong boundary values : independence of the defining function and spaces of test functions
Jean-Pierre Rosay; Edgar Lee Stout
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 1, page 13-31
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topRosay, Jean-Pierre, and Stout, Edgar Lee. "Strong boundary values : independence of the defining function and spaces of test functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1 (2002): 13-31. <http://eudml.org/doc/84460>.
@article{Rosay2002,
abstract = {The notion of “strong boundary values” was introduced by the authors in the local theory of hyperfunction boundary values (boundary values of functions with unrestricted growth, not necessarily solutions of a PDE). In this paper two points are clarified, at least in the global setting (compact boundaries): independence with respect to the defining function that defines the boundary, and the spaces of test functions to be used. The proofs rely crucially on simple results in spectral asymptotics.},
author = {Rosay, Jean-Pierre, Stout, Edgar Lee},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {strong boundary values},
language = {eng},
number = {1},
pages = {13-31},
publisher = {Scuola normale superiore},
title = {Strong boundary values : independence of the defining function and spaces of test functions},
url = {http://eudml.org/doc/84460},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Rosay, Jean-Pierre
AU - Stout, Edgar Lee
TI - Strong boundary values : independence of the defining function and spaces of test functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 1
SP - 13
EP - 31
AB - The notion of “strong boundary values” was introduced by the authors in the local theory of hyperfunction boundary values (boundary values of functions with unrestricted growth, not necessarily solutions of a PDE). In this paper two points are clarified, at least in the global setting (compact boundaries): independence with respect to the defining function that defines the boundary, and the spaces of test functions to be used. The proofs rely crucially on simple results in spectral asymptotics.
LA - eng
KW - strong boundary values
UR - http://eudml.org/doc/84460
ER -
References
top- [1] N. Aronszajn – T. M. Creese – L. J. Lipkin, “Polyharmonic Functions”, The Clarendon Press Oxford University Press, New York, 1983. Notes taken by Eberhard Gerlach, Oxford Science Publications. Zbl0514.31001MR745128
- [2] I. Chavel, “Eigenvalues in Riemannian Geometry”, Academic Press Inc., Orlando, 1984, including a chapter by Burton Randol, with an appendix by Jozef Dodziuk. Zbl0551.53001MR768584
- [3] G. B. Folland, “Introduction to Partial Differential Equations, 2nd. ed.”, Princeton University Press, Princeton, 1995. Zbl0841.35001MR1357411
- [4] L. V. Hörmander, “Linear Partial Differential Operators”, volume 116 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1964.
- [5] L. V. Hörmander, “The Analysis of Linear Partial Differential Operators”, volume 275 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1985. Zbl0612.35001
- [6] J.-P. Rosay – E. L. Stout, “Strong Boundary Values, Analytic Functionals, and Nonlinear Paley-Wiener Theory”, Memoirs of the American Mathematical Society, American Mathematical Society, Providence, Vol. 153, n. 725, 2001. Zbl0988.46032MR1846591
- [7] W. Rudin, “Functional Analysis”, McGraw-Hill, New York, 1991. Zbl0867.46001MR1157815
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.