Traces and the F. and M. Riesz theorem for vector fields
Shiferaw Berhanu[1]; Jorge Hounie[2]
- [1] Temple University, Department of Mathematics, Philadelphia PA 19122-6094 (USA)
- [2] UFSCar, Departamento de Matemática, 13565.905 São Carlos SP (Brazil)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 5, page 1425-1460
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerhanu, Shiferaw, and Hounie, Jorge. "Traces and the F. and M. Riesz theorem for vector fields." Annales de l’institut Fourier 53.5 (2003): 1425-1460. <http://eudml.org/doc/116077>.
@article{Berhanu2003,
abstract = {This work studies conditions that insure the existence of weak boundary values for
solutions of a complex, planar, smooth vector field $L$. Applications to the F. and M.
Riesz property for vector fields are discussed.},
affiliation = {Temple University, Department of Mathematics, Philadelphia PA 19122-6094 (USA); UFSCar, Departamento de Matemática, 13565.905 São Carlos SP (Brazil)},
author = {Berhanu, Shiferaw, Hounie, Jorge},
journal = {Annales de l’institut Fourier},
keywords = {weak boundary values; locally integrable vector fields; Hardy spaces; F. and M. Riesz property},
language = {eng},
number = {5},
pages = {1425-1460},
publisher = {Association des Annales de l'Institut Fourier},
title = {Traces and the F. and M. Riesz theorem for vector fields},
url = {http://eudml.org/doc/116077},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Berhanu, Shiferaw
AU - Hounie, Jorge
TI - Traces and the F. and M. Riesz theorem for vector fields
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1425
EP - 1460
AB - This work studies conditions that insure the existence of weak boundary values for
solutions of a complex, planar, smooth vector field $L$. Applications to the F. and M.
Riesz property for vector fields are discussed.
LA - eng
KW - weak boundary values; locally integrable vector fields; Hardy spaces; F. and M. Riesz property
UR - http://eudml.org/doc/116077
ER -
References
top- M.S. Baouendi, F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math 113 (1981), 387-421 Zbl0491.35036MR607899
- K. Barbey, H. Konig, Abstract analytic function theory and Hardy algebras, 593 (1977), Springer, Berlin Zbl0373.46062MR442690
- S. Berhanu, J. Hounie, An F. and M. Riesz theorem for planar vector fields, Math. Ann 320 (2001), 463-485 Zbl0984.35045MR1846773
- S. Berhanu, J. Hounie, On boundary properties of solutions of complex vector fields, J. Funct. Anal 192 (2002), 446-490 Zbl1011.35142MR1923410
- R.G.M. Brummelhuis, A microlocal F. and M. Riesz theorem with applications, Revista Matematica Iberoamericana 5 (1989), 21-36 Zbl0714.58055MR1057336
- P. Duren, Theory of spaces, (1970), Academic Press Zbl0215.20203MR268655
- L. Hörmander, The analysis of linear partial differential operators I, (1990), Springer-Verlag Zbl0712.35001
- S. Koshi, Topics in complex analysis: Recent developments on the F. and M. Riesz theorem, 31 (1995), Banach Center Publ, Warsaw Zbl0830.43011MR1341391
- S. Koshi, The F. and M. Riesz theorem on locally compact abelian groups, Infinite-dimensional harmonic analysis (Tubingen, 1995) (1996), 138-145 Zbl0852.43003
- L. Nirenberg, Lectures on linear partial differential equations, 17 (1973), Amer. Math.Soc Zbl0267.35001MR450755
- L. Nirenberg, F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math 16 (1963), 331-351 Zbl0117.06104MR163045
- J.-P. Rosay, E.L. Stout, Strong boundary values, analytic functionals and nonlinear Paley-Wiener theory, Memoirs of the AMS 153 (2001) Zbl0988.46032MR1846591
- J.-P. Rosay, E.L. Stout, Strong boundary values: independence of the defining function and spaces of test functions, (2002) Zbl1051.46026MR1994800
- F. Treves, Hypo-analytic structures, local theory, (1992), Princeton University Press Zbl0787.35003MR1200459
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.