Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 2, page 461-469
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBoualem, Hassan, and Herzlich, Marc. "Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 461-469. <http://eudml.org/doc/84477>.
@article{Boualem2002,
abstract = {Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.},
author = {Boualem, Hassan, Herzlich, Marc},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {461-469},
publisher = {Scuola normale superiore},
title = {Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces},
url = {http://eudml.org/doc/84477},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Boualem, Hassan
AU - Herzlich, Marc
TI - Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 461
EP - 469
AB - Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.
LA - eng
UR - http://eudml.org/doc/84477
ER -
References
top- [1] L. Andersson – M. Dahl, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Global Anal. Geom. 16 (1998), 1-27. Zbl0946.53021MR1616570
- [2] C. Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509-521. Zbl0778.53037MR1224089
- [3] A. L. Besse, “Einstein manifolds”, Ergeb. Math. Grenzgeb., Band 10, Springer, Berlin, 1981. Zbl0613.53001MR2371700
- [4] O. Biquard, “Métriques d’Einstein asymptotiquement symétriques”, Astérisque, vol. 265, Soc. math. France, 2000. Zbl0967.53030
- [5] C. R. Graham – J. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), 186-225. Zbl0765.53034MR1112625
- [6] M. Herzlich, Scalar curvature and rigidity for odd-dimensional complex hyperbolic spaces, Math. Ann. 312 (1998), 641-657. Zbl0946.53022MR1660251
- [7] K. D. Kirchberg, Killing spinors on Kähler manifolds, Ann. Global Anal. Geom. 11 (1993), 141-164. Zbl0810.53033MR1225435
- [8] M. C. Leung, Pinching theorem on asymptotically hyperbolic spaces, Internat. J. Math. 4 (1993), 841-857. Zbl0810.53032MR1245353
- [9] M. Min-Oo, Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 (1989), 527-539. Zbl0686.53038MR1027758
- [10] A. Moroianu, La première valeur propre de l’opérateur de Dirac sur les variétés kähleriennes compactes, Comm. Math. Phys. 169 (1995), 373-384. Zbl0832.53054MR1329200
- [11] A. Moroianu, manifolds and complex contact structures, Comm. Math. Phys. 193 (1998), 661-674. Zbl0908.53024MR1624855
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.