Einstein manifolds, volume rigidity and Seiberg-Witten theory
Andrea Sambusetti (1998-1999)
Séminaire de théorie spectrale et géométrie
Similarity:
Andrea Sambusetti (1998-1999)
Séminaire de théorie spectrale et géométrie
Similarity:
Andrei Moroianu (1999)
Annales de l'institut Fourier
Similarity:
We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.
Bodgan Alexandrov, Gueo Grantcharov, Stefan Ivanov (2001)
Annales de l’institut Fourier
Similarity:
We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.
Luca Scala (2011)
Annales de l’institut Fourier
Similarity:
Let a compact connected oriented 4-manifold. We study the space of -structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on . In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all -structures . We prove that, on a complex Kähler surface, for an hermitian metric sufficiently close to the original Kähler metric, the...
Maung Min-Oo (1989)
Mathematische Annalen
Similarity:
Mattias Dahl (1997)
Banach Center Publications
Similarity:
We show what extra condition is necessary to be able to use the positive mass argument of Witten [12] on an asymptotically locally euclidean manifold. Specifically we show that the 'generalized positive action conjecture' holds if one assumes that the signature of the manifold has the correct value.