Displaying similar documents to “Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces”

The Dolbeault operator on Hermitian spin surfaces

Bodgan Alexandrov, Gueo Grantcharov, Stefan Ivanov (2001)

Annales de l’institut Fourier

Similarity:

We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.

Perturbations of the metric in Seiberg-Witten equations

Luca Scala (2011)

Annales de l’institut Fourier

Similarity:

Let M a compact connected oriented 4-manifold. We study the space Ξ of Spin c -structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on M . In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all Spin c -structures  Ξ . We prove that, on a complex Kähler surface, for an hermitian metric h sufficiently close to the original Kähler metric, the...

The positive mass theorem for ALE manifolds

Mattias Dahl (1997)

Banach Center Publications

Similarity:

We show what extra condition is necessary to be able to use the positive mass argument of Witten [12] on an asymptotically locally euclidean manifold. Specifically we show that the 'generalized positive action conjecture' holds if one assumes that the signature of the manifold has the correct value.