A remark on a deformation theory of Green and Lazarsfeld.
Let F be a transversely holomorphic foliation on a compact manifold. We show the existence of a versal space for those deformations of F which keep fixed its differentiable type if F is Hermitian or if F has complex codimension one and admits a transverse projectable connection. We also prove the existence of a versal space of deformations for the complex structures on a Lie group invariant by a cocompact subgroup.
The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.
The objective of this paper is to give a criterium for an unfolding of a holomorphic foliation with singularities to be holomorphically trivial.