Generic subgroups of Aut
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 4, page 851-868
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Abate:, “Iteration theory of holomorphic maps on taut manifolds”, Mediterranean Press, Rende, Cosenza 1989. Zbl0747.32002MR1098711
- [2] M. Abate – J.-P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512. Zbl0724.32012MR1065938
- [3] F. Bracci, Common fixed points of commuting holomorphic maps in the unit ball of , Proc. Amer. Math. Soc. 127, 4, (1999), 1133-1141. Zbl0916.58006MR1610920
- [4] C. de Fabritiis, Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc. 124 (1996), 3027-3037. Zbl0866.32004MR1371120
- [5] C. de Fabritiis – G. Gentili, On holomorphic maps which commute with hyperbolic automorphisms, Adv. Math. 144 (1999), 119-136. Zbl0976.32014MR1695235
- [6] C. de Fabritiis – A. Iannuzzi, Quotients of the unit ball of by a free action of , Jour. d’Anal. Math. 85 (2001), 213-224. Zbl1008.32011MR1869609
- [7] H. M. Farkas – I. Kra, “Riemann Surfaces”, Springer, Berlin, 1980. Zbl0475.30001MR583745
- [8] T. Franzoni – E. Vesentini, “Holomorphic maps and invariant distances”, North-Holland, Amsterdam, 1980. Zbl0447.46040MR563329
- [9] M. H. Heins, A generalization of the Aumann-Carathéodory Starrheitssatz, Duke Math. J. 8 (1941), 312-316. Zbl67.0283.02MR4912JFM67.0283.02
- [10] A. Hurwitz, Über algebraische Gebilde mit eindeutingen Transformationen in sich, Math. Ann. 41 (1893), 403-442. MR1510753JFM24.0380.02
- [11] I. Kra, “Automorphic forms and Kleinian groups”, Beinjamin, New York, 1972. Zbl0253.30015MR357775
- [12] B. MacCluer, Iterates of holomorphic self-maps of the unit ball of , Mich. Math. J. 30 (1983), 97-106. Zbl0528.32019MR694933
- [13] W. Rudin, “Function theory in the Unit Ball of ”, Springer, Berlin 1980. Zbl0495.32001MR601594