The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “ Γ -convergence of concentration problems”

Geometric study of the beta-integers for a Perron number and mathematical quasicrystals

Jean-Pierre Gazeau, Jean-Louis Verger-Gaugry (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We investigate in a geometrical way the point sets of     obtained by the   β -numeration that are the   β -integers   β [ β ]   where   β   is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the   β -numeration, allowing to lift up the   β -integers to some points of the lattice   m   ( m =   degree of   β ) lying about the dominant eigenspace of the companion matrix of   β  . When   β   is in particular a Pisot number, this framework gives another proof of the fact...

On the representation of functions by orthogonal series in weighted L p spaces

M. Grigorian (1999)

Studia Mathematica

Similarity:

It is proved that if φ n is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 < μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form k = 1 c k φ k ( x ) , where c k l q for all q>2, with the following properties: 1. For any p ∈ [1,2) and f L μ p [ 0 , 1 ] = f : ʃ 0 1 | f ( x ) | p μ ( x ) d x < there are numbers ɛ k , k=1,2,…, ɛ k = 1 or 0, such that l i m n ʃ 0 1 | k = 1 n ɛ k c k φ k ( x ) - f ( x ) | p μ ( x ) d x = 0 . 2. For every p ∈ [1,2) and f L μ p [ 0 , 1 ] there are a function g L 1 [ 0 , 1 ] with g(x) = f(x) on E and numbers δ k , k=1,2,…, δ k = 1 or 0,...

Tauberian theorems for Cesàro summable double sequences

Ferenc Móricz (1994)

Studia Mathematica

Similarity:

( s j k : j , k = 0 , 1 , . . . ) be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which ( s j k ) converges in Pringsheim’s sense. These conditions are satisfied if ( s j k ) is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If ( s j k ) is summable (C,1,1) to a finite limit and there exist constants n 1 > 0 and H such that j k ( s j k - s j - 1 , k - s j - 1 , k + s j - 1 , k - 1 ) - H , j ( s j k - s j - 1 , k ) - H and k ( s j k - s j , k - 1 ) - H whenever j , k > n 1 , then...

An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

Partial differential operators depending analytically on a parameter

Frank Mantlik (1991)

Annales de l'institut Fourier

Similarity:

Let P ( λ , D ) = | α | m a α ( λ ) D α be a differential operator with constant coefficients a α depending analytically on a parameter λ . Assume that the family { P( λ ,D) } is of constant strength. We investigate the equation P ( λ , D ) 𝔣 λ g λ where 𝔤 λ is a given analytic function of λ with values in some space of distributions and the solution 𝔣 λ is required to depend analytically on λ , too. As a special case we obtain a regular fundamental solution of P( λ ,D) which depends analytically on λ . This result answers a question of L. Hörmander. ...