Local and canonical heights of subvarieties

Walter Gubler

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 4, page 711-760
  • ISSN: 0391-173X

Abstract

top
Classical results of Weil, Néron and Tate are generalized to local heights of subvarieties with respect to hermitian pseudo-divisors. The local heights are well-defined if the intersection of supports is empty. In the archimedean case, the metrics are hermitian and the local heights are defined by a refined version of the * -product of Gillet-Soulé developped on compact varieties without assuming regularity. In the non-archimedean case, the local heights are intersection numbers using methods from rigid and formal geometry to handle non-discrete valuations. To include canonical metrics of line bundles algebraically equivalent to  0 , a local Chow cohomology is introduced on formal models over the valuation ring. Using Tate’s limit argument, canonical local heights of subvarieties on an abelian variety are obtained with respect to any pseudo-divisors. By integration over an M -field, we deduce corresponding results for global heights of subvarieties.

How to cite

top

Gubler, Walter. "Local and canonical heights of subvarieties." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 711-760. <http://eudml.org/doc/84517>.

@article{Gubler2003,
abstract = {Classical results of Weil, Néron and Tate are generalized to local heights of subvarieties with respect to hermitian pseudo-divisors. The local heights are well-defined if the intersection of supports is empty. In the archimedean case, the metrics are hermitian and the local heights are defined by a refined version of the $*$-product of Gillet-Soulé developped on compact varieties without assuming regularity. In the non-archimedean case, the local heights are intersection numbers using methods from rigid and formal geometry to handle non-discrete valuations. To include canonical metrics of line bundles algebraically equivalent to $0$, a local Chow cohomology is introduced on formal models over the valuation ring. Using Tate’s limit argument, canonical local heights of subvarieties on an abelian variety are obtained with respect to any pseudo-divisors. By integration over an $M$-field, we deduce corresponding results for global heights of subvarieties.},
author = {Gubler, Walter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {711-760},
publisher = {Scuola normale superiore},
title = {Local and canonical heights of subvarieties},
url = {http://eudml.org/doc/84517},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Gubler, Walter
TI - Local and canonical heights of subvarieties
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 711
EP - 760
AB - Classical results of Weil, Néron and Tate are generalized to local heights of subvarieties with respect to hermitian pseudo-divisors. The local heights are well-defined if the intersection of supports is empty. In the archimedean case, the metrics are hermitian and the local heights are defined by a refined version of the $*$-product of Gillet-Soulé developped on compact varieties without assuming regularity. In the non-archimedean case, the local heights are intersection numbers using methods from rigid and formal geometry to handle non-discrete valuations. To include canonical metrics of line bundles algebraically equivalent to $0$, a local Chow cohomology is introduced on formal models over the valuation ring. Using Tate’s limit argument, canonical local heights of subvarieties on an abelian variety are obtained with respect to any pseudo-divisors. By integration over an $M$-field, we deduce corresponding results for global heights of subvarieties.
LA - eng
UR - http://eudml.org/doc/84517
ER -

References

top
  1. [Bei] A. Beilinson, Height pairing between algebraic cycles, In: “Current trends in arithmetical algebraic geometry”, K. Ribet (ed.), Contemp. Math. 67, Amer. Math. Soc., 1985. Zbl0624.14005MR902590
  2. [Ber] V. G. Berkovich, “Spectral geometry and analytic geometry over non-archimedean fields”, Math. Surv. Monogr. 33, American Mathematical Society, 1990. Zbl0715.14013MR1070709
  3. [Bl] S. Bloch, Height pairings for algebraic cycles, J. Pure Appl. Algebra 34 (1984), 119-145. Zbl0577.14004MR772054
  4. [BlGS] S. Bloch – H. Gillet – C. Soulé, Non-archimedean Arakelov theory, Publ. Math. IHES 78 (1995), 427-485. Zbl0866.14011MR1325788
  5. [BH] T. Bloom – M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. Zbl0175.37301MR248349
  6. [BGR] S. Bosch – U. Güntzer – R. Remmert, “Non-archimedean analysis”, Grundl. Math. Wiss. 262, Springer, Berlin-Heidelberg-New York, 1984. Zbl0539.14017MR746961
  7. [BL1] S. Bosch – W. Lütkebohmert, Stable reduction and uniformization of abelian varieties I, Math. Ann. 270 (1985), 349-379. Zbl0554.14012MR774362
  8. [BL2] S. Bosch – W. Lütkebohmert, Formal and rigid geometry, I. Rigid spaces, Math. Ann. 295 (1993), 291-317. Zbl0808.14017MR1202394
  9. [BL3] S. Bosch – W. Lütkebohmert, Formal and rigid geometry, II. Flattening techniques, Math. Ann. 296 (1993), 403-429. Zbl0808.14018MR1225983
  10. [BoGS] J.-B. Bost – H. Gillet – C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7/4 (1994), 903-1027. Zbl0973.14013MR1260106
  11. [CR] T. Chinburg – R. Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993), 1-44. Zbl0756.14013MR1195689
  12. [Fa1] G. Faltings, Calculus on arithm. surfaces, Ann. of Math. 119 (1984), 387-424. Zbl0559.14005MR740897
  13. [Fa2] G. Faltings, Diophantine approximation on abelian varieties, Ann. Math. 133 (1991), 549-576. Zbl0734.14007MR1109353
  14. [Fu] W. Fulton, “Intersection theory”, Ergeb. Math. Grenzgeb. 3. Folge 2, Springer-Verlag, 1984. Zbl0885.14002MR732620
  15. [GS1] H. Gillet – C. Soulé, Amplitude arithmétique, C.R. Acad Sci. Paris 307 (1988), 887-890. Zbl0676.14007MR974432
  16. [GS2] H. Gillet – C. Soulé, Arithmetic intersection theory, Publ. Math. IHES 72 (1990), 94-174. Zbl0741.14012MR1087394
  17. [GH] P. Griffiths – J. Harris, “Principles of algebraic geometry”, Pure and Applied Mathematics, Wiley, New York, 1978. Zbl0408.14001MR507725
  18. [EGA II] A. Grothendieck – J. Dieudonné, Eléments de géometrie algébrique II, Étude globale élémentaire de quelques classes de morphismes, Publ. Math. IHES 8 (1960). Zbl0118.36206
  19. [EGA IV] A. Grothendieck – J. Dieudonné, Eléments de géometrie algébrique IV, Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES 32 (1967). Zbl0153.22301
  20. [Gu1] W. Gubler, Höhentheorie (mit einem Appendix von Jürg Kramer), Math. Ann. 298 (1994), 427-455. Zbl0792.14012MR1262769
  21. [Gu2] W. Gubler, Heights of subvarieties over M -fields, In: “Arithmetic geometry”, F. Catanese (ed.), Symp. Math. 37 (1997), 190-227. Zbl0916.14011MR1472498
  22. [Gu3] W. Gubler, Local heights of subvarieties over non-archimedean fields, J. Reine Angew. Math. 498 (1998), 61-113. Zbl0906.14013MR1629925
  23. [Ha] R. Hartshorne, “Algebraic geometry”, GTM 52, Springer, Berlin, Heidelberg, New York, 1977. Zbl0367.14001MR463157
  24. [Hr] P. Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. (1) 107 (1985), 23-38. Zbl0593.14004MR778087
  25. [Ja] N. Jacobson, “Basic algebra II”, 2 nd edition, Freeman, New York, 1989. Zbl0694.16001MR1009787
  26. [dJ] A.J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. IHES 83 (1996), 51-93. Zbl0916.14005MR1423020
  27. [Ki] J. King, The currents defined by algebraic varieties, Acta Math. 127 (1971), 185-220. Zbl0224.32008MR393550
  28. [Kl] S. L. Kleiman, Towards a numerical theory of ampleness, Ann of Math. 84 (1966), 293-344. Zbl0146.17001MR206009
  29. [Ko] U. Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, (German) Schriftenreine Math. Inst. Univ. Münster, 2 Serie, 7 (1974). Zbl0275.14006MR422671
  30. [La] S. Lang, “Fundamentals of diophantine geometry”, Berlin, Heidelberg, New York, Springer, 1977. Zbl0528.14013MR715605
  31. [Moi] B. G. Moishezon, On n -dimensional compact varieties with n algebraically independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967), 51-177. Zbl0186.26204
  32. [Mor] A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101-142. Zbl1007.11042MR1779799
  33. [Ne] A. Néron, Quasi-functions et hauteurs sur les variètes abéliennes, Ann. of Math. 82 (1965), 249-331. Zbl0163.15205MR179173
  34. [Ph1] P. Philippon, Critères pour l’indépendance algébrique, Publ. Math. IHES 64 (1986), 5-52. Zbl0615.10044MR876159
  35. [Ph2] P. Philippon, Sur des hauteurs alternatives I, Math. Ann. 289 (1991), 255-283. Zbl0726.14017MR1092175
  36. [Ul] P. Ullrich, The direct image theorem in formal and rigid geometry, Math. Ann. 301 (1995), 69-104. Zbl0821.32029MR1312570
  37. [Vo] P. Vojta, “Diophantine approximations and value distribution theory”, Springer lecture notes 1239, 1987. Zbl0609.14011MR883451
  38. [We] A. Weil, Arithmetic on algebraic varieties, Ann. Math. 53 (1951), 412-444. Zbl0043.27002MR42169
  39. [Zh1] S. Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), 171-193. Zbl0795.14015MR1207481
  40. [Zh2] S. Zhang, Small points and adelic metrics, J. Alg. Geometry 4 (1995), 281-300. Zbl0861.14019MR1311351
  41. [Zh3] S. Zhang, Equidistribution of small points on abelian varieties, Ann. of Math. 147 (1998), 159-165. Zbl0991.11034MR1609518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.