Varieties with P 3 ( X ) = 4 and q ( X ) = dim ( X )

Jungkai Alfred Chen[1]; Christopher D. Hacon[2]

  • [1] Department of Mathematics National Taiwan University No.1, Sec. 4, Roosevelt Road    Taipei, 106, Taiwan
  • [2] Department of Mathematics University of Utah 155 South 1400 East, JWB 233 Salt Lake City Utah 84112-0090, USA

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 2, page 399-425
  • ISSN: 0391-173X

How to cite

top

Chen, Jungkai Alfred, and Hacon, Christopher D.. "Varieties with $P_3 (X) = 4$ and $q (X)=$ dim $(X)$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (2004): 399-425. <http://eudml.org/doc/84535>.

@article{Chen2004,
affiliation = {Department of Mathematics National Taiwan University No.1, Sec. 4, Roosevelt Road    Taipei, 106, Taiwan; Department of Mathematics University of Utah 155 South 1400 East, JWB 233 Salt Lake City Utah 84112-0090, USA},
author = {Chen, Jungkai Alfred, Hacon, Christopher D.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {399-425},
publisher = {Scuola Normale Superiore, Pisa},
title = {Varieties with $P_3 (X) = 4$ and $q (X)=$ dim $(X)$},
url = {http://eudml.org/doc/84535},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Chen, Jungkai Alfred
AU - Hacon, Christopher D.
TI - Varieties with $P_3 (X) = 4$ and $q (X)=$ dim $(X)$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 2
SP - 399
EP - 425
LA - eng
UR - http://eudml.org/doc/84535
ER -

References

top
  1. [Be] A. Beauville, “Complex Algebraic Surfaces”, London Math. Soc. Student Texts 34, Cambridge University Press, 1996. Zbl0849.14014MR1406314
  2. [CH1] J. A. Chen – C. D. Hacon, Characterization of Abelian Varieties, Invent. Math. 143 (2001), 435-447. Zbl0996.14020MR1835393
  3. [CH2] J. A. Chen – C. D. Hacon, Pluricanonical maps of varieties of maximal Albanese dimension, Math. Ann. 320 (2001), 367-380. Zbl1073.14507MR1839768
  4. [CH3] J. A. Chen – C. D. Hacon, On Algebraic fiber spaces over varieties of maximal Albanese dimension, Duke Math. J. 111 (2002), 159-175. Zbl1055.14010MR1876444
  5. [ClH] H. Clemens – C. D. Hacon, Deformations of the trivial line bundle and vanishing theorems, Amer. J. Math. 124 (2002), 769-815. Zbl1101.14016MR1914458
  6. [EL] L. Ein – R. Lazarsfeld, Singularities of theta divisors and birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), 243-258. Zbl0901.14028MR1396893
  7. [GL] M. Green – R. Lazarsfeld, Deformation theory, generic vanishing theorems and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407. Zbl0659.14007MR910207
  8. [Hac] C. D. Hacon, Fourier transforms, generic vanishing theorems and polarizations of abelian varieties, Math. Z. 235 (2000), 717-726. Zbl1041.14019MR1801582
  9. [Hac2] C. D. Hacon, Varieties with P 3 = 3 and q = dim ( X ) , to appear in Math. Nachr. Zbl1073.14049MR2121568
  10. [Hac3] C. D. Hacon, Divisors on principally polarized varieties, Compositio Math. 119 (1999), 321-329. Zbl0980.14031MR1727134
  11. [Hac4] C. D. Hacon, Effective criteria for birational morphisms, J. London Math. Soc. 67 (2003), 337-348. Zbl1058.14020MR1956139
  12. [Hac5] C. D. Hacon, A derived category approach to generic vanishing theorems, to appear in J. Reine Angew. Math. Zbl1137.14012MR2097552
  13. [HP] C. D. Hacon – R. Pardini, On the birational geometry of varieties of maximal albanese dimension, J. Reine Angew. Math. 546 (2002), 177-199. Zbl0993.14005MR1900998
  14. [Ka] Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), 253-276. Zbl0471.14022MR622451
  15. [Ko1] J. Kollár, Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11-42. Zbl0598.14015MR825838
  16. [Ko2] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177-215. Zbl0819.14006MR1223229
  17. [HM] D. W. Hahn – D. Miranda, Quadruple covers of algebraic varieties, J. Algebraic Geom. 8 (1999), 1-30. Zbl0982.14008MR1658196
  18. [M] S. Mukai, Duality between D ( X ) and D ( X ^ ) with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175. Zbl0417.14036MR607081
  19. [Pa] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213. Zbl0721.14009MR1103912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.