Singularités éliminables pour des équations semi-linéaires
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 1, page 185-206
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaras, Pierre, and Pierre, Michel. "Singularités éliminables pour des équations semi-linéaires." Annales de l'institut Fourier 34.1 (1984): 185-206. <http://eudml.org/doc/74615>.
@article{Baras1984,
abstract = {Étant donné $L$ un opérateur différentiel d’ordre $m$ sur un ouvert $\Omega $ de $\{\bf R\}^N$, $K$ un compact de $\Omega $, $\gamma >1$ et $\gamma ^\{\prime \} = \gamma /(\gamma -1)$, nous montrons que toute solution de “$Lu+u^\gamma =0$ sur $\Omega \backslash K,~ u\ge 0$” est solution de “$Lu+u^\gamma =0$ sur $\Omega $” dès que la $W^\{m,\gamma ^\{\prime \}\}$-capacité de $K$ est nulle. Cette condition s’avère nécessaire quand $L$ est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que $``Lu+u\vert u\vert ^\{\gamma -1\} =\mu ,~~u\vert _\{\partial \Omega \}= 0^\{\prime \prime \}$ où $\mu $ est une mesure de Radon bornée sur $\Omega $, a une solution si et seulement si $\mu $ ne charge pas les ensembles de $W^\{2,\gamma ^\{\prime \}\}$-capacité nulle.},
author = {Baras, Pierre, Pierre, Michel},
journal = {Annales de l'institut Fourier},
keywords = {semilinear equation; removable singularity},
language = {fre},
number = {1},
pages = {185-206},
publisher = {Association des Annales de l'Institut Fourier},
title = {Singularités éliminables pour des équations semi-linéaires},
url = {http://eudml.org/doc/74615},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Baras, Pierre
AU - Pierre, Michel
TI - Singularités éliminables pour des équations semi-linéaires
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 1
SP - 185
EP - 206
AB - Étant donné $L$ un opérateur différentiel d’ordre $m$ sur un ouvert $\Omega $ de ${\bf R}^N$, $K$ un compact de $\Omega $, $\gamma >1$ et $\gamma ^{\prime } = \gamma /(\gamma -1)$, nous montrons que toute solution de “$Lu+u^\gamma =0$ sur $\Omega \backslash K,~ u\ge 0$” est solution de “$Lu+u^\gamma =0$ sur $\Omega $” dès que la $W^{m,\gamma ^{\prime }}$-capacité de $K$ est nulle. Cette condition s’avère nécessaire quand $L$ est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que $``Lu+u\vert u\vert ^{\gamma -1} =\mu ,~~u\vert _{\partial \Omega }= 0^{\prime \prime }$ où $\mu $ est une mesure de Radon bornée sur $\Omega $, a une solution si et seulement si $\mu $ ne charge pas les ensembles de $W^{2,\gamma ^{\prime }}$-capacité nulle.
LA - fre
KW - semilinear equation; removable singularity
UR - http://eudml.org/doc/74615
ER -
References
top- [1] D.R. ADAMS and J.C. POLKING, The equivalence of two definitions of capacity, Proc. of A.M.S., 37 (1973), 529-534. Zbl0251.31005MR48 #6451
- [2] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math, 12 (1959), 623-727. Zbl0093.10401MR23 #A2610
- [3] P. BARAS et M. PIERRE, Singularités éliminables d'équations elliptiques semi-linéaires, C.R.A.S., Paris, Série A, (1982). Zbl0517.35033MR85a:35005
- [4] Ph. BENILAN et H. BREZIS, Papier à paraître sur l'équation de Thomas-Fermi. Voir aussi H. BREZIS, Some Variational problems of the Thomas-Fermi type, in Variational Inequalities, Cottle, Gianessi, Lions éd., Reidel (1980). Zbl0643.35108
- [5] H. BREZIS et P.L. LIONS, A note on isolated singularities for linear elliptic equations, Mathematical Analysis and Applications, Part. A. Volume dedicated to L. Schwartz, L. Nachbin éd., Acad. Press (1981), 263-266. Zbl0468.35036MR83e:35039
- [6] H. BREZIS and W.A. STRAUSS, Semi-linear second-order elliptic equations in L1, J. of Math. Soc. Japan, 25 (1973), 565-590. Zbl0278.35041MR49 #826
- [7] H. BREZIS and L. VERON, Removable singularities for some Nonlinear elliptic equations, Arch. for Rat. Mech. and Ana., 75 (1980), 1-6. Zbl0459.35032MR83i:35071
- [8] D. FEYEL et A. DE LA PRADELLE, Topologies fines et compactifications associées à certains espaces de Dirichlet, Ann. Inst. Fourier, Grenoble, 27-4 (1977), 121-146. Zbl0357.31009MR58 #22625
- [9] D. GILBARG and N.S. TRUDINGER, Elliptic partial differential equations of second order, Springer Verlag, 224 (1977). Zbl0361.35003MR57 #13109
- [10] M. GRUN-REHOMME, Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev, J. Math. Pures et Appl., 56 (1977), 149-156. Zbl0314.35001
- [11] T. KATO, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148. Zbl0246.35025MR48 #12155
- [12] A.E. KOSELEV, A priori estimates in Lp and generalized solutions of elliptic equations and systems, A.M.S. Transl. series, 2, 2D (1962), 105-171. Zbl0122.33702
- [13] P.L. LIONS, Isolated singularities in semilinear problems, J. of Diff. Equa., 38 (1980), 441-450. Zbl0458.35033MR82g:35040
- [14] N.G. MEYERS, A theory of capacities for potentials of functions in Lebesgue Classes, Math. Scand., 26 (1970), 255-292. Zbl0242.31006MR43 #3474
- [15] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. Zbl0088.07601MR22 #823
- [16] L. VERON, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. Th., Meth. Appl., Vol. 5, n° 3 (1981), 225-242. Zbl0457.35031MR82f:35076
- [17] L. VERON, Singularités éliminables d'équations elliptiques non linéaires, J. of Diff. Equa., 41 (1981), 87-95. Zbl0431.35005MR82k:35042
Citations in EuDML Documents
top- M. Pierre, Problèmes semi-linéaires avec données mesures
- N. Alaa, Solutions faibles d'équations paraboliques quasilinéaires avec données initiales mesurés
- Haïm Brezis, Xavier Cabré, Some simple nonlinear PDE's without solutions
- Jean-François Le Gall, Hitting probabilities and potential theory for the brownian path-valued process
- Pierre Baras, Michel Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones
- Moshe Marcus, Laurent Véron, Boundary trace of positive solutions of nonlinear elliptic inequalities
- Alberto Fiorenza, Alain Prignet, Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data
- D. Adams, Michel Pierre, Capacitary strong type estimates in semilinear problems
- Alberto Fiorenza, Alain Prignet, Orlicz capacities and applications to some existence questions for elliptic pdes having measure data
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.