Sur la transformation d’Abel-Radon des courants localement résiduels

Bruno Fabre[1]

  • [1] 22, rue Emile Dubois 75014 Paris, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 1, page 27-57
  • ISSN: 0391-173X

Abstract

top
After recalling the definitions of the Abel-Radon transformation of currents and of locally residual currents, we show that the Abel-Radon transform ( α ) of a locally residual current α remains locally residual. Then a theorem of P. Griffiths, G. Henkin and M. Passare (cf. [7], [9] and [10]) can be formulated as follows  :Let U be a domain of the grassmannian variety G ( p , N ) of complex p -planes in N , U * : = t U H t be the corresponding linearly p -concave domain of N , and α be a locally residual current of bidegree ( N , p ) . Suppose that the meromorphic n -form ( α ) extends meromorphically to a greater domain U ˜ of G ( p , N ) . If α is of type ω [ T ] , with T an analytic subvariety of pure codimension p in U * , and ω a meromorphic (resp. regular) q -form ( q > 0 ) on T , then α extends in a unique way as a locally residual current to the domain U ˜ * : = t U ˜ H t . In particular, if ( α ) = 0 , then α extends as a ¯ -closed residual current on N .We show in this note that this theorem remains valid for an arbitrary residual current of bidegree ( N , p ) , in the particular case where p = 1 .

How to cite

top

Fabre, Bruno. "Sur la transformation d’Abel-Radon des courants localement résiduels." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.1 (2005): 27-57. <http://eudml.org/doc/84555>.

@article{Fabre2005,
affiliation = {22, rue Emile Dubois 75014 Paris, France},
author = {Fabre, Bruno},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {1},
pages = {27-57},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sur la transformation d’Abel-Radon des courants localement résiduels},
url = {http://eudml.org/doc/84555},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Fabre, Bruno
TI - Sur la transformation d’Abel-Radon des courants localement résiduels
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 1
SP - 27
EP - 57
LA - fre
UR - http://eudml.org/doc/84555
ER -

References

top
  1. [1] J.-E Björk, Residues and 𝒟 -modules, In : “The legacy of Niels Henrik Abel”, The Abel Bicentennial, Oslo, Springer, 2002, 605–651. Zbl1069.32001MR2077588
  2. [2] N. Coleff and M. Hererra, “Les courants résiduels associés à une forme méromorphe”, Springer Lect. Notes 633, 1978. Zbl0371.32007
  3. [3] A. Dickenstein, M. Hererra and C. Sessa, On the global lifting of meromorphic forms, Manuscripta Math. 47 (1984), 31–45. Zbl0565.32012MR744312
  4. [4] A. Dickenstein and C. Sessa, Canonical representative in moderate cohomology, Invent. Math. 80 (1985), 417–434. Zbl0556.32005MR791667
  5. [5] P. Dingoyan, Un phénomène de Hartogs dans les variétés projectives, Math. Z. 232 (1999), 217–240. Zbl0941.32011MR1718681
  6. [6] B. Fabre, On a problem of Griffiths : inversion of Abel’s theorem for families of zero-cycles, Ark. Mat. 41 (2003), 61–84. Zbl1035.14002MR1971940
  7. [7] P. Griffiths, Variations on a theorem of Abel, Invent. math. 35 (1976), 321–390. Zbl0339.14003MR435074
  8. [8] S. G. Gindikin and G. M. Henkin, Integral geometry for ¯ -cohomology in q -linear concave domains in C P n , Functional Anal. Appl. 12 (1978), 247–261. Zbl0423.32013MR515626
  9. [9] G. Henkin, The Abel-Radon transform and several complex variables, Ann. of Math. Studies 137 (1995), 223–275. Zbl0848.32012MR1369141
  10. [10] G. Henkin and M. Passare, Abelian differentials on singular varities and variations on a theorem of Lie-Griffiths, Invent. Math. 135 (1999), 297–328. Zbl0932.32012MR1666771
  11. [11] G. Henkin, Abel-Radon transform and applications, In : “The legacy of Niels Henrik Abel”, Springer, The Abel Bicentennial, Oslo, 2002, 477–494. Zbl1075.44002MR2077585
  12. [12] M. Hererra and D. Lieberman, Residues and principal values on complex spaces, Math. Ann. 194 (1971), 259–294. Zbl0224.32012MR296352
  13. [13] H. Kneser, Einfacher Beweis eines Satzes über rationale Funktionen zweier Veränderlichen, Hamburg Univ. Math. Sem. Abhandl. 9 (1933), 195–196. Zbl0007.15601JFM59.0357.02
  14. [14] M. Passare, Residues, currents, and their relations to ideals of meromorphic functions, Math. Scand. 62 (1988), 75–152. Zbl0633.32005MR961584
  15. [15] R. Remmert and K. Stein, Über die wesentlichen Singularitäten analytischer Mengen, Math. Ann. 126 (1953), 263–306. Zbl0051.06303MR60033
  16. [16] W. Rothstein, Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen, Math. Z. 53 (1950), 84–95. Zbl0037.18301MR37365
  17. [17] L. Schwartz, “Théorie des distributions”, 2nd ed., Hermann, Paris, 1966. Zbl0149.09501
  18. [18] J. A. Wood, A simple criterion for local hypersurfaces to be algebraic, Duke Math. J. 51 (1984), 235–237. Zbl0584.14021MR744296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.