Quaternionic maps and minimal surfaces

Jingyi Chen[1]; Jiayu Li[2]

  • [1] Department of Mathematics The University of British Columbia Vancouver, BC, Canada V6T 1Z2
  • [2] Math. Group The abdus salam ICTP Trieste 34100 Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 3, page 375-388
  • ISSN: 0391-173X

Abstract

top
Let ( M , J α , α = 1 , 2 , 3 ) and ( N , 𝒥 α , α = 1 , 2 , 3 ) be hyperkähler manifolds. We study stationary quaternionic maps between M and N . We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in W 1 , 2 ( M , N ) . We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal 𝕊 2 in the hyperkähler surface M ˜ 2 0 studied by Atiyah-Hitchin.

How to cite

top

Chen, Jingyi, and Li, Jiayu. "Quaternionic maps and minimal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 375-388. <http://eudml.org/doc/84564>.

@article{Chen2005,
abstract = {Let $(M, J^\alpha , \alpha =1,2,3)$ and $(N, \{\mathcal \{J\}\}^\alpha , \alpha =1,2,3)$ be hyperkähler manifolds. We study stationary quaternionic maps between $M$ and $N$. We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in $W^\{1,2\}(M,N)$. We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal $\{\mathbb \{S\}\}^2$ in the hyperkähler surface $\widetilde\{M\}^0_2$ studied by Atiyah-Hitchin.},
affiliation = {Department of Mathematics The University of British Columbia Vancouver, BC, Canada V6T 1Z2; Math. Group The abdus salam ICTP Trieste 34100 Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China},
author = {Chen, Jingyi, Li, Jiayu},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {375-388},
publisher = {Scuola Normale Superiore, Pisa},
title = {Quaternionic maps and minimal surfaces},
url = {http://eudml.org/doc/84564},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Chen, Jingyi
AU - Li, Jiayu
TI - Quaternionic maps and minimal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 375
EP - 388
AB - Let $(M, J^\alpha , \alpha =1,2,3)$ and $(N, {\mathcal {J}}^\alpha , \alpha =1,2,3)$ be hyperkähler manifolds. We study stationary quaternionic maps between $M$ and $N$. We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in $W^{1,2}(M,N)$. We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal ${\mathbb {S}}^2$ in the hyperkähler surface $\widetilde{M}^0_2$ studied by Atiyah-Hitchin.
LA - eng
UR - http://eudml.org/doc/84564
ER -

References

top
  1. [1] D. V. Alekseevsky and S. Marchiafava, A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. 184 (2005), 53-74. MR2128094
  2. [2] D. Anselmi and P. Fré, Topological Sigma-Models in Four Dimensions and Triholomorphic Maps, Nucl. Phys. B416 (1994), 255-300. Zbl1007.53500MR1272647
  3. [3] M. Atiyah and N. Hitchin, “The geometry and dynamics of magnetic monopoles”, Princeton University Press 1988. Zbl0671.53001MR934202
  4. [4] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443. Zbl0792.53039MR1208652
  5. [5] J. Chen, Complex anti-self-dual connections on product of Calabi-Yau surfaces and triholomorphic curves, Comm. Math. Phys. 201 (1999), 201-247. Zbl0948.32027MR1669413
  6. [6] J. Chen and J. Li, Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355-384. Zbl1067.53035MR1847314
  7. [7] J. Chen and J. Li, Mean curvature flow of surface in 4 -manifolds, Adv. Math. 163 (2001), 287-309. Zbl1002.53046MR1864836
  8. [8] J. Chen and G. Tian, Minimal surfaces in Riemannian 4-manifolds, Geom. Funct. Anal. 7 (1997), 873-916. Zbl0891.53042MR1475549
  9. [9] S. S. Chern and J. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59-83. Zbl0521.53050MR692106
  10. [10] S. Donaldson and R. Thomas, Gauge theory in higher dimensions, In: “The Geometric Universe: Science, Geometry and the work of Roger Penrose”, S. A. Huggett et al. (eds), Oxford Univ. Press, 1998, pp. 31–47. Zbl0926.58003MR1634503
  11. [11] L. C. Evens, Partial regularity for stationary harmonic maps, Arch. Rat. Mech. Anal. 116 (1991), 101-112. Zbl0754.58007
  12. [12] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640. Zbl0627.58019MR848842
  13. [13] J. M. Figuroa-O’Farrill, C. Köhl and B. Spence, Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves, Nucl. Phys. B521 (1998), 419-443. Zbl0954.53019MR1635760
  14. [14] D. Joyce, Hypercomplex algebraic geometry, Quart. J. Math. 49 (1998), 129-162. Zbl0924.14002MR1634730
  15. [15] F. H. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. Math. 149 (1999), 785-829. Zbl0949.58017MR1709303
  16. [16] J. Li and G. Tian, A blow-up formula for stationary harmonic maps, Internat. Math. Res. Notices 14 (1998), 735-755. Zbl0944.58010MR1637101
  17. [17] C. Mamone and S. Salamon, Yang-Mills fields on quaternionic spaces. Nonlinearity 1 (1988), 517-530. Zbl0681.53037MR967469
  18. [18] Y. Nagatomo and T. Nitta, k -instantons on G 2 ( C n + 2 ) and stable vector bundles. Math. Z. 232 (1999), 721-737. Zbl0945.32009MR1727550
  19. [19] Y. S. Poon and K. Galicki, Duality and Yang-Mills fields on quaternionic Kähler manifolds. J. Math. Phys. 32 (1991), 1263-1268. Zbl0729.53033MR1103479
  20. [20] J. Rawnsley, f-structures, f-twistor spaces and harmonic maps, In: “Geometry Seminar ‘Luigi Bianchi’, II – 1984”, E. Vesentini (ed.), Lect. Nothes Math. 1164, Springer, Berlin, 1985, 85-159. Zbl0592.58009MR829229
  21. [21] S. Salamon, Harmonic and holomorphic maps, In: “Geometry Seminar ‘Luigi Bianchi’, II – 1984”, E. Vesentini (ed.), Lect. Notes Math. 1164, Springer, Berlin, 1985, 161-224. Zbl0591.53031MR829230
  22. [22] R. Schoen, Analytic aspects of harmonic maps, In: “Seminar on nonlinear Partial Differential equations”, S. S. Chern (ed.), M.S.R.I. Publications 2, Springer-Verlag, New-York, 1984, 321-358. Zbl0551.58011MR765241
  23. [23] L. Simon, Rectifiability of the singular set of energy minimizing maps, Calc. Var. Partial Differential Equations 3 (1995), 1-65. Zbl0818.49023MR1384836
  24. [24] A. Swann, Quaternionic Kähler Geometry and the Fundamental 4-form, In: “Proc. Curvature Geom. workshop”, C. T. J. Dodson (ed.), ULDM Publications Lancaster, 1989, 165-173. Zbl0744.53020MR1089891
  25. [25] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2 -spheres, Ann. of Math. (2) 113 (1981), 1-24. Zbl0462.58014MR604040
  26. [26] D. Widdows, A Dolbeault-type double complex on quaternionic manifolds, Asian J. Math. 6 (2002), 253-275. Zbl1029.58015MR1928630

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.