Quaternionic maps and minimal surfaces
Jingyi Chen[1]; Jiayu Li[2]
- [1] Department of Mathematics The University of British Columbia Vancouver, BC, Canada V6T 1Z2
- [2] Math. Group The abdus salam ICTP Trieste 34100 Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 3, page 375-388
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topChen, Jingyi, and Li, Jiayu. "Quaternionic maps and minimal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 375-388. <http://eudml.org/doc/84564>.
@article{Chen2005,
abstract = {Let $(M, J^\alpha , \alpha =1,2,3)$ and $(N, \{\mathcal \{J\}\}^\alpha , \alpha =1,2,3)$ be hyperkähler manifolds. We study stationary quaternionic maps between $M$ and $N$. We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in $W^\{1,2\}(M,N)$. We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal $\{\mathbb \{S\}\}^2$ in the hyperkähler surface $\widetilde\{M\}^0_2$ studied by Atiyah-Hitchin.},
affiliation = {Department of Mathematics The University of British Columbia Vancouver, BC, Canada V6T 1Z2; Math. Group The abdus salam ICTP Trieste 34100 Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China},
author = {Chen, Jingyi, Li, Jiayu},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {375-388},
publisher = {Scuola Normale Superiore, Pisa},
title = {Quaternionic maps and minimal surfaces},
url = {http://eudml.org/doc/84564},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Chen, Jingyi
AU - Li, Jiayu
TI - Quaternionic maps and minimal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 375
EP - 388
AB - Let $(M, J^\alpha , \alpha =1,2,3)$ and $(N, {\mathcal {J}}^\alpha , \alpha =1,2,3)$ be hyperkähler manifolds. We study stationary quaternionic maps between $M$ and $N$. We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in $W^{1,2}(M,N)$. We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal ${\mathbb {S}}^2$ in the hyperkähler surface $\widetilde{M}^0_2$ studied by Atiyah-Hitchin.
LA - eng
UR - http://eudml.org/doc/84564
ER -
References
top- [1] D. V. Alekseevsky and S. Marchiafava, A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. 184 (2005), 53-74. MR2128094
- [2] D. Anselmi and P. Fré, Topological Sigma-Models in Four Dimensions and Triholomorphic Maps, Nucl. Phys. B416 (1994), 255-300. Zbl1007.53500MR1272647
- [3] M. Atiyah and N. Hitchin, “The geometry and dynamics of magnetic monopoles”, Princeton University Press 1988. Zbl0671.53001MR934202
- [4] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443. Zbl0792.53039MR1208652
- [5] J. Chen, Complex anti-self-dual connections on product of Calabi-Yau surfaces and triholomorphic curves, Comm. Math. Phys. 201 (1999), 201-247. Zbl0948.32027MR1669413
- [6] J. Chen and J. Li, Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355-384. Zbl1067.53035MR1847314
- [7] J. Chen and J. Li, Mean curvature flow of surface in -manifolds, Adv. Math. 163 (2001), 287-309. Zbl1002.53046MR1864836
- [8] J. Chen and G. Tian, Minimal surfaces in Riemannian 4-manifolds, Geom. Funct. Anal. 7 (1997), 873-916. Zbl0891.53042MR1475549
- [9] S. S. Chern and J. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59-83. Zbl0521.53050MR692106
- [10] S. Donaldson and R. Thomas, Gauge theory in higher dimensions, In: “The Geometric Universe: Science, Geometry and the work of Roger Penrose”, S. A. Huggett et al. (eds), Oxford Univ. Press, 1998, pp. 31–47. Zbl0926.58003MR1634503
- [11] L. C. Evens, Partial regularity for stationary harmonic maps, Arch. Rat. Mech. Anal. 116 (1991), 101-112. Zbl0754.58007
- [12] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640. Zbl0627.58019MR848842
- [13] J. M. Figuroa-O’Farrill, C. Köhl and B. Spence, Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves, Nucl. Phys. B521 (1998), 419-443. Zbl0954.53019MR1635760
- [14] D. Joyce, Hypercomplex algebraic geometry, Quart. J. Math. 49 (1998), 129-162. Zbl0924.14002MR1634730
- [15] F. H. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. Math. 149 (1999), 785-829. Zbl0949.58017MR1709303
- [16] J. Li and G. Tian, A blow-up formula for stationary harmonic maps, Internat. Math. Res. Notices 14 (1998), 735-755. Zbl0944.58010MR1637101
- [17] C. Mamone and S. Salamon, Yang-Mills fields on quaternionic spaces. Nonlinearity 1 (1988), 517-530. Zbl0681.53037MR967469
- [18] Y. Nagatomo and T. Nitta, -instantons on and stable vector bundles. Math. Z. 232 (1999), 721-737. Zbl0945.32009MR1727550
- [19] Y. S. Poon and K. Galicki, Duality and Yang-Mills fields on quaternionic Kähler manifolds. J. Math. Phys. 32 (1991), 1263-1268. Zbl0729.53033MR1103479
- [20] J. Rawnsley, f-structures, f-twistor spaces and harmonic maps, In: “Geometry Seminar ‘Luigi Bianchi’, II – 1984”, E. Vesentini (ed.), Lect. Nothes Math. 1164, Springer, Berlin, 1985, 85-159. Zbl0592.58009MR829229
- [21] S. Salamon, Harmonic and holomorphic maps, In: “Geometry Seminar ‘Luigi Bianchi’, II – 1984”, E. Vesentini (ed.), Lect. Notes Math. 1164, Springer, Berlin, 1985, 161-224. Zbl0591.53031MR829230
- [22] R. Schoen, Analytic aspects of harmonic maps, In: “Seminar on nonlinear Partial Differential equations”, S. S. Chern (ed.), M.S.R.I. Publications 2, Springer-Verlag, New-York, 1984, 321-358. Zbl0551.58011MR765241
- [23] L. Simon, Rectifiability of the singular set of energy minimizing maps, Calc. Var. Partial Differential Equations 3 (1995), 1-65. Zbl0818.49023MR1384836
- [24] A. Swann, Quaternionic Kähler Geometry and the Fundamental 4-form, In: “Proc. Curvature Geom. workshop”, C. T. J. Dodson (ed.), ULDM Publications Lancaster, 1989, 165-173. Zbl0744.53020MR1089891
- [25] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of -spheres, Ann. of Math. (2) 113 (1981), 1-24. Zbl0462.58014MR604040
- [26] D. Widdows, A Dolbeault-type double complex on quaternionic manifolds, Asian J. Math. 6 (2002), 253-275. Zbl1029.58015MR1928630
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.