Twistorial construction of harmonic maps of surfaces into four-manifolds
J. Eells, S. Salamon (1985)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
J. Eells, S. Salamon (1985)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Michael Grüter (1998)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Claudio Arezzo (2000)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Norio Ejiri (1994)
Compositio Mathematica
Similarity:
Elisabetta Barletta (2003)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Given a Hörmander system on a domain we show that any subelliptic harmonic morphism from into a -dimensional riemannian manifold is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also is a submersion provided that and has rank . If (the Heisenberg group) and , where is the Lewy operator, then a smooth map is a subelliptic harmonic morphism if and only if is a harmonic morphism, where is the canonical circle bundle and ...
Paul Baird (1987)
Annales de l'institut Fourier
Similarity:
We study harmonic morphisms from domains in and to a Riemann surface , obtaining the classification of such in terms of holomorphic mappings from a covering space of into certain Grassmannians. We show that the only non-constant submersive harmonic morphism defined on the whole of to a Riemann surface is essentially the Hopf map. Comparison is made with the theory of analytic functions. In particular we consider multiple-valued harmonic morphisms defined on domains...