On isotype subgroups of abelian groups

John M. Irwin; Elbert A. Walker

Bulletin de la Société Mathématique de France (1961)

  • Volume: 89, page 451-460
  • ISSN: 0037-9484

How to cite

top

Irwin, John M., and Walker, Elbert A.. "On isotype subgroups of abelian groups." Bulletin de la Société Mathématique de France 89 (1961): 451-460. <http://eudml.org/doc/87008>.

@article{Irwin1961,
author = {Irwin, John M., Walker, Elbert A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {group theory},
language = {eng},
pages = {451-460},
publisher = {Société mathématique de France},
title = {On isotype subgroups of abelian groups},
url = {http://eudml.org/doc/87008},
volume = {89},
year = {1961},
}

TY - JOUR
AU - Irwin, John M.
AU - Walker, Elbert A.
TI - On isotype subgroups of abelian groups
JO - Bulletin de la Société Mathématique de France
PY - 1961
PB - Société mathématique de France
VL - 89
SP - 451
EP - 460
LA - eng
KW - group theory
UR - http://eudml.org/doc/87008
ER -

References

top
  1. [1] CHARLES (Bernard). - Étude sur les sous-groupes d'un groupe abélien, Bull. Soc. math. France, t. 88, 1960, p. 217-227. Zbl0102.26505
  2. [2] FUCHS (Laszlo). - Abelian groups. - Budapest, Hungarian Academy of Sciences, 1958. Zbl0091.02704
  3. [3] IRWIN (J. M.). - High subgroups of Abelian torsion groups, Pacific J. of Math. (to appear). Zbl0106.02303
  4. [4] IRWIN (J. M.) and WALKER (E. A.). - On N-high subgroups of Abelian groups, Pacific J. of Math. (to appear). Zbl0106.02304
  5. [5] KAPLANSKY (Irving). - Infinite abelian groups. - Ann Arbor, University of Michigan, Press, 1954 (University of Michigan Publications in Mathematics, 2). Zbl0057.01901
  6. [6] KOLETTIS (G., Jr.). - Direct sums of countable groups, Duke math. J., t. 27, 1960, p. 111-125. Zbl0091.02802MR22 #1616

Citations in EuDML Documents

top
  1. John Irwin, Carol Peercy, Elbert Walker, Splitting properties of high subgroups
  2. Jindřich Bečvář, Abelian groups in which every Γ -isotype subgroup is a pure subgroup, resp. an isotype subgroup
  3. Jindřich Bečvář, A generalization of a theorem of F. Richman and C. P. Walker
  4. Jindřich Bečvář, Abelian groups in which every pure subgroup is an isotype subgroup
  5. Peter Vassilev Danchev, Commutative modular group algebras of p -mixed and p -splitting abelian Σ -groups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.