Abelian groups in which every -isotype subgroup is a pure subgroup, resp. an isotype subgroup
Rendiconti del Seminario Matematico della Università di Padova (1980)
- Volume: 62, page 251-259
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBečvář, Jindřich. "Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup." Rendiconti del Seminario Matematico della Università di Padova 62 (1980): 251-259. <http://eudml.org/doc/107751>.
@article{Bečvář1980,
author = {Bečvář, Jindřich},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {pure subgroups; isotype subgroup},
language = {eng},
pages = {251-259},
publisher = {Seminario Matematico of the University of Padua},
title = {Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup},
url = {http://eudml.org/doc/107751},
volume = {62},
year = {1980},
}
TY - JOUR
AU - Bečvář, Jindřich
TI - Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 62
SP - 251
EP - 259
LA - eng
KW - pure subgroups; isotype subgroup
UR - http://eudml.org/doc/107751
ER -
References
top- [1] J Bečvář, Abelian groups in which every pure subgroup is an isotype subgroup, Rend. Sem. Math. Univ. Padova, 62 (1980), pp. 129-136. Zbl0436.20035MR582946
- [2] S.N. Černikov, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.
- [3] L. Fuchs, Infinite abelian groups I, II, Academic Press, 1970, 1973. Zbl0257.20035
- [4] L. Fuchs - A. Kertész - T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. Zbl0056.02301MR61103
- [5] J.M. Irwin - E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. Zbl0102.26701MR147539
- [6] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. Zbl0154.02103MR210782
- [7] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. Zbl0043.02902MR42410
- [8] R.C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. Zbl0277.20073MR325810
- [9] C. Megibben, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. Zbl0135.05903MR171842
- [10] K.M. Rangaswamy, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. Zbl0122.03502MR167525
- [11] K.M. Rangaswamy, Groups with special properties, Proc. Nat. Inst. Sci. India, A31 (1965), pp. 513-526. Zbl0154.26803MR207828
- [12] V.S. Rochlina, Ob ε-čistote v abelevych gruppach, Sib. Mat. Ž., 11 (1970), pp. 161-167.
- [13] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. Zbl0179.32601MR245675
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.