Abelian groups in which every Γ -isotype subgroup is a pure subgroup, resp. an isotype subgroup

Jindřich Bečvář

Rendiconti del Seminario Matematico della Università di Padova (1980)

  • Volume: 62, page 251-259
  • ISSN: 0041-8994

How to cite

top

Bečvář, Jindřich. "Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup." Rendiconti del Seminario Matematico della Università di Padova 62 (1980): 251-259. <http://eudml.org/doc/107751>.

@article{Bečvář1980,
author = {Bečvář, Jindřich},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {pure subgroups; isotype subgroup},
language = {eng},
pages = {251-259},
publisher = {Seminario Matematico of the University of Padua},
title = {Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup},
url = {http://eudml.org/doc/107751},
volume = {62},
year = {1980},
}

TY - JOUR
AU - Bečvář, Jindřich
TI - Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 62
SP - 251
EP - 259
LA - eng
KW - pure subgroups; isotype subgroup
UR - http://eudml.org/doc/107751
ER -

References

top
  1. [1] J Bečvář, Abelian groups in which every pure subgroup is an isotype subgroup, Rend. Sem. Math. Univ. Padova, 62 (1980), pp. 129-136. Zbl0436.20035MR582946
  2. [2] S.N. Černikov, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128. 
  3. [3] L. Fuchs, Infinite abelian groups I, II, Academic Press, 1970, 1973. Zbl0257.20035
  4. [4] L. Fuchs - A. Kertész - T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. Zbl0056.02301MR61103
  5. [5] J.M. Irwin - E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. Zbl0102.26701MR147539
  6. [6] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. Zbl0154.02103MR210782
  7. [7] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. Zbl0043.02902MR42410
  8. [8] R.C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. Zbl0277.20073MR325810
  9. [9] C. Megibben, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. Zbl0135.05903MR171842
  10. [10] K.M. Rangaswamy, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. Zbl0122.03502MR167525
  11. [11] K.M. Rangaswamy, Groups with special properties, Proc. Nat. Inst. Sci. India, A31 (1965), pp. 513-526. Zbl0154.26803MR207828
  12. [12] V.S. Rochlina, Ob ε-čistote v abelevych gruppach, Sib. Mat. Ž., 11 (1970), pp. 161-167. 
  13. [13] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. Zbl0179.32601MR245675

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.