Abelian groups in which every pure subgroup is an isotype subgroup

Jindřich Bečvář

Rendiconti del Seminario Matematico della Università di Padova (1980)

  • Volume: 62, page 129-136
  • ISSN: 0041-8994

How to cite

top

Bečvář, Jindřich. "Abelian groups in which every pure subgroup is an isotype subgroup." Rendiconti del Seminario Matematico della Università di Padova 62 (1980): 129-136. <http://eudml.org/doc/107739>.

@article{Bečvář1980,
author = {Bečvář, Jindřich},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {pure subgroups; isotype subgroup},
language = {eng},
pages = {129-136},
publisher = {Seminario Matematico of the University of Padua},
title = {Abelian groups in which every pure subgroup is an isotype subgroup},
url = {http://eudml.org/doc/107739},
volume = {62},
year = {1980},
}

TY - JOUR
AU - Bečvář, Jindřich
TI - Abelian groups in which every pure subgroup is an isotype subgroup
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 62
SP - 129
EP - 136
LA - eng
KW - pure subgroups; isotype subgroup
UR - http://eudml.org/doc/107739
ER -

References

top
  1. [1] K. Benabdallah - J. M. IRWIN, On quasi-essential subgroups of primary abelian groups, Can. J. Math., 22 (1970), pp. 1176-1184. Zbl0209.05702MR271220
  2. [2] L. Fuchs, Infinite Abelian Groups I, II, Acad. Press, 1970, 1973. Zbl0257.20035
  3. [3] L. Fuchs - A. Kertész - T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. Zbl0056.02301MR61103
  4. [4] J.M. Irwin - E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. Zbl0102.26701MR147539
  5. [5] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. Zbl0154.02103MR210782
  6. [6] A. Kfrtész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. Zbl0043.02902MR42410
  7. [7] L. Ja.KULIKOV, Obobščennye primarnye gruppy, Trudy Moskov. Mat. Obšč., 1 (1952), pp. 247-326. Zbl0053.21001MR49188
  8. [8] R.C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. Zbl0277.20073MR325810
  9. [9] C. Megibben, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. Zbl0135.05903MR171842
  10. [10] R.S. Pierce, Centers of purity in abelian groups, Pacific J. Math., 13 (1963), pp. 215-219. Zbl0114.25703MR159879
  11. [11] K.M. Rangaswamy, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. Zbl0122.03502MR167525
  12. [12] K.M. Rangaswamy, Groups with special properties, Proc. Nat. Inst. Sci. India, A31 (1965), pp. 513-526. Zbl0154.26803MR207828
  13. [13] F. Richman - C.P. Walker, On a certain purification problem for primary abelian groups, Bull. Soc. Math. France, 94 (1966), pp. 207-210. Zbl0147.27302MR204521
  14. [14] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. Zbl0179.32601MR245675
  15. [15] S.N. Černikov, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128. 

NotesEmbed ?

top

You must be logged in to post comments.