A Hahn-Banach extension theorem for analytic mappings

Richard M. Aron; Paul D. Berner

Bulletin de la Société Mathématique de France (1978)

  • Volume: 106, page 3-24
  • ISSN: 0037-9484

How to cite

top

Aron, Richard M., and Berner, Paul D.. "A Hahn-Banach extension theorem for analytic mappings." Bulletin de la Société Mathématique de France 106 (1978): 3-24. <http://eudml.org/doc/87335>.

@article{Aron1978,
author = {Aron, Richard M., Berner, Paul D.},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
pages = {3-24},
publisher = {Société mathématique de France},
title = {A Hahn-Banach extension theorem for analytic mappings},
url = {http://eudml.org/doc/87335},
volume = {106},
year = {1978},
}

TY - JOUR
AU - Aron, Richard M.
AU - Berner, Paul D.
TI - A Hahn-Banach extension theorem for analytic mappings
JO - Bulletin de la Société Mathématique de France
PY - 1978
PB - Société mathématique de France
VL - 106
SP - 3
EP - 24
LA - eng
UR - http://eudml.org/doc/87335
ER -

References

top
  1. [1] ARON (R. M.) and SCHOTTENLOHER (M. R.). — Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal., t. 21, 1976, p. 7-30. Zbl0328.46046MR53 #6323
  2. [2] BOLAND (P.). — Holomorphic functions on nuclear spaces, Trans. Amer. math. Soc., t. 209, 1975, p. 275-281. Zbl0317.46036MR52 #8931
  3. [3] DAY (M.). — Normed linear spaces. Third Edition. — Springer-Verlag, Berlin, 1973 (Ergebnisse der mathematik, 21). Zbl0268.46013MR49 #9588
  4. [4] DINEEN (S.). — Holomorphically complete locally convex topological vector spaces, "Séminaire Pierre Lelong: analyse", 1971/1972, p. 77-111. —Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 332). Zbl0278.46005MR51 #13684
  5. [5] DUNFORD (N.) and SCHWARTZ (J. T.). — Linear operators. Part I. — New York, Interscience Publishers, 1966 (Pure and applied mathematics. Interscience, 7). 
  6. [6] JOSEFSON (B.). — Bounding subsets of l∞ (A), Thesis, Uppsala University, 1975. 
  7. [7] LINDENSTRAUSS (J.). — Extension of compact operators. — Providence, American mathematical Society, 1964 (Memoirs of the American mathematical Society, 48). Zbl0141.12001MR31 #3828
  8. [8] LINDESTRAUSS (J.) and TZAFRIRI (L.). — On the complemented subspaces problem, Israel J. Math., t. 9, 1971, p. 263-269. Zbl0211.16301MR43 #2474
  9. [9] NACHBIN (L.). — Topology on spaces of holomorphic mappings. — Berlin, Springer-Verlag, 1969 (Ergebnisse der Mathematik, 47). Zbl0172.39902MR40 #7787
  10. [10] NACHBIN (L.). — Recent developments in infinite dimensional holomorphy, Bull. Amer. math. Soc., t. 79, 1973, p. 625-640. Zbl0279.32017MR48 #871
  11. [11] NOVERRAZ (P.). — Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie. — Amsterdam, North-Holland publishing company, 1973 (North-Holland mathematics Studies, 3; Notas de Matematica, 48). Zbl0251.46049MR50 #10814
  12. [12] PELCZYNSKI (A.). — A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Polon. Sc., t. 11, 1963, p. 379-386. Zbl0117.33203MR28 #4370
  13. [13] RYAN (R.). — Thesis, Trinity College, University of Dublin. 
  14. [14] SCHAEFER (H. H.). — Topological vector spaces. — New York, MacMillan Compagny, 1966 (MacMillan Series in advanced Mathematics); and Berlin, Springer-Verlag, 1971 (Graduate Texts in Mathematics, 3). Zbl0141.30503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.