On analytic models of degenerating abelian varieties

Yuval Flicker

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 283-293
  • ISSN: 0037-9484

How to cite

top

Flicker, Yuval. "On analytic models of degenerating abelian varieties." Bulletin de la Société Mathématique de France 107 (1979): 283-293. <http://eudml.org/doc/87350>.

@article{Flicker1979,
author = {Flicker, Yuval},
journal = {Bulletin de la Société Mathématique de France},
keywords = {stability field; p-adic numbers; abelian varieties},
language = {eng},
pages = {283-293},
publisher = {Société mathématique de France},
title = {On analytic models of degenerating abelian varieties},
url = {http://eudml.org/doc/87350},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Flicker, Yuval
TI - On analytic models of degenerating abelian varieties
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 283
EP - 293
LA - eng
KW - stability field; p-adic numbers; abelian varieties
UR - http://eudml.org/doc/87350
ER -

References

top
  1. [1] BERTRAND (D.). — Un théorème de Schneider-Lang sur certains domaines non simplement connexes, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 16e année, 1974/1975, n° G 18, 13 p. Zbl0318.10024
  2. [2] BERTRAND (D.). — Séries d'Eisenstein et transcendance, Bull. Soc. math. France, t. 104, 1976, p. 309-21. Zbl0341.10031MR55 #10398
  3. [3] BERTRAND (D.). — Fonctions abéliennes p-adiques: Définitions et conjectures, Groupe d'étude d'Analyse ultramétrique, 4e année, 1976/1977, n° 21, 13 p. Zbl0383.14016
  4. [4] BERTRAND (D.) and FLICKER (Y.). — Linear forms on abelian varieties over local fields, Acta Arithm., Warszawa (to appear). Zbl0432.10019
  5. [5] BOMBIERI (E.). — Algebraic values of meromorphic maps, Invent. Math., Berlin, t. 10, 1970, p. 267-287. Zbl0214.33702MR46 #5328
  6. [6] FLICKER (Y.). — Linear forms on abelian varieties: A sharpening (to appear). 
  7. [7] FLICKER (Y.). — Linear forms on arithmetic abelian varieties: Ineffective bounds (to appear). Zbl0456.10018
  8. [8] GERRITZEN (L.). — On non-archimedean representations of abelian varieties, Math. Annalen., t. 96, 1972, p. 323-346. Zbl0255.14013MR46 #7247
  9. [9] LANG (S.). — Introduction to transcendental numbers. — Reading, Addison-Wesley, 1966 (Addison-Wesley Series in Mathematics). Zbl0144.04101MR35 #5397
  10. [10] MORIKAWA (H.). — Theta functions and abelian varieties over valuation fields of rank one, I, Nagoya math. J., t. 20, 1962, p. 1-27. Zbl0115.39001MR25 #5066
  11. [11] MUMFORD (D.). — An analytic construction of degenerating abelian varieties over complex rings, Comp. Math., Groningen, t. 24, 1972, p. 239-272. Zbl0241.14020MR50 #4593
  12. [12] SCHNEIDER (T.). — Einführung in die transzendenten Zahlen. — Berlin, Springer-Verlag, 1957. Zbl0077.04703

NotesEmbed ?

top

You must be logged in to post comments.