On analytic models of degenerating abelian varieties

Yuval Flicker

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 283-293
  • ISSN: 0037-9484

How to cite

top

Flicker, Yuval. "On analytic models of degenerating abelian varieties." Bulletin de la Société Mathématique de France 107 (1979): 283-293. <http://eudml.org/doc/87350>.

@article{Flicker1979,
author = {Flicker, Yuval},
journal = {Bulletin de la Société Mathématique de France},
keywords = {stability field; p-adic numbers; abelian varieties},
language = {eng},
pages = {283-293},
publisher = {Société mathématique de France},
title = {On analytic models of degenerating abelian varieties},
url = {http://eudml.org/doc/87350},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Flicker, Yuval
TI - On analytic models of degenerating abelian varieties
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 283
EP - 293
LA - eng
KW - stability field; p-adic numbers; abelian varieties
UR - http://eudml.org/doc/87350
ER -

References

top
  1. [1] BERTRAND (D.). — Un théorème de Schneider-Lang sur certains domaines non simplement connexes, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 16e année, 1974/1975, n° G 18, 13 p. Zbl0318.10024
  2. [2] BERTRAND (D.). — Séries d'Eisenstein et transcendance, Bull. Soc. math. France, t. 104, 1976, p. 309-21. Zbl0341.10031MR55 #10398
  3. [3] BERTRAND (D.). — Fonctions abéliennes p-adiques: Définitions et conjectures, Groupe d'étude d'Analyse ultramétrique, 4e année, 1976/1977, n° 21, 13 p. Zbl0383.14016
  4. [4] BERTRAND (D.) and FLICKER (Y.). — Linear forms on abelian varieties over local fields, Acta Arithm., Warszawa (to appear). Zbl0432.10019
  5. [5] BOMBIERI (E.). — Algebraic values of meromorphic maps, Invent. Math., Berlin, t. 10, 1970, p. 267-287. Zbl0214.33702MR46 #5328
  6. [6] FLICKER (Y.). — Linear forms on abelian varieties: A sharpening (to appear). 
  7. [7] FLICKER (Y.). — Linear forms on arithmetic abelian varieties: Ineffective bounds (to appear). Zbl0456.10018
  8. [8] GERRITZEN (L.). — On non-archimedean representations of abelian varieties, Math. Annalen., t. 96, 1972, p. 323-346. Zbl0255.14013MR46 #7247
  9. [9] LANG (S.). — Introduction to transcendental numbers. — Reading, Addison-Wesley, 1966 (Addison-Wesley Series in Mathematics). Zbl0144.04101MR35 #5397
  10. [10] MORIKAWA (H.). — Theta functions and abelian varieties over valuation fields of rank one, I, Nagoya math. J., t. 20, 1962, p. 1-27. Zbl0115.39001MR25 #5066
  11. [11] MUMFORD (D.). — An analytic construction of degenerating abelian varieties over complex rings, Comp. Math., Groningen, t. 24, 1972, p. 239-272. Zbl0241.14020MR50 #4593
  12. [12] SCHNEIDER (T.). — Einführung in die transzendenten Zahlen. — Berlin, Springer-Verlag, 1957. Zbl0077.04703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.