Forme normale d'une fonction sur une surface de caractéristique positive

Jean Giraud

Bulletin de la Société Mathématique de France (1983)

  • Volume: 111, page 109-124
  • ISSN: 0037-9484

How to cite

top

Giraud, Jean. "Forme normale d'une fonction sur une surface de caractéristique positive." Bulletin de la Société Mathématique de France 111 (1983): 109-124. <http://eudml.org/doc/87432>.

@article{Giraud1983,
author = {Giraud, Jean},
journal = {Bulletin de la Société Mathématique de France},
keywords = {positive characteristic; divisor with normal crossing; sheaf of derivations; p-basis; blowing up},
language = {fre},
pages = {109-124},
publisher = {Société mathématique de France},
title = {Forme normale d'une fonction sur une surface de caractéristique positive},
url = {http://eudml.org/doc/87432},
volume = {111},
year = {1983},
}

TY - JOUR
AU - Giraud, Jean
TI - Forme normale d'une fonction sur une surface de caractéristique positive
JO - Bulletin de la Société Mathématique de France
PY - 1983
PB - Société mathématique de France
VL - 111
SP - 109
EP - 124
LA - fre
KW - positive characteristic; divisor with normal crossing; sheaf of derivations; p-basis; blowing up
UR - http://eudml.org/doc/87432
ER -

References

top
  1. [1] ABHYANKAR (S.). — Uniformization in a p-cyclic extension of a two-dimensional regular local domain of residue field characteristic p, Wiss. Abh. des Landes Nordrhein-Westfallen. Band, vol. 33, 1966, p. 243-317. Zbl0144.03104MR34 #172
  2. [2] DULAC (H.). — Recherches sur les points singuliers des équations différentielles, J. École Polytechnique, vol. 2, section 9, 1904, p. 141-158. JFM35.0331.02
  3. [3] KUNZ (E.). — Characterization of regular local rings of characteristic p, Amer. J. Math., vol. 91, 1969, p. 772-784. Zbl0188.33702MR40 #5609
  4. [4] MATTEI (J. F.) et MOUSSU (R.). — Holonomie et intégrales premières, Ann. Scient. Éc. Norm. Sup., 4e série, t. 13, 1980, p. 489-523. Zbl0458.32005MR83b:58005
  5. [5] SEIDENBERG (A.). — Reduction of the singularities of the equation A dy=Bdx, Amer. J. Math., 1968, p. 248-269. Zbl0159.33303MR36 #3762
  6. [6] YUAN (Shuen). — Finite dimensional inseparable algebras, Trans. Amer. Math. Soc., vol. 149, 1970, p. 577-587. Zbl0202.04503MR41 #6836

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.