Décompositions en cascades des systèmes automatiques et feuilletages invariants

Michel Fliess

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 285-293
  • ISSN: 0037-9484

How to cite

top

Fliess, Michel. "Décompositions en cascades des systèmes automatiques et feuilletages invariants." Bulletin de la Société Mathématique de France 113 (1985): 285-293. <http://eudml.org/doc/87488>.

@article{Fliess1985,
author = {Fliess, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {cascade decomposition; nonlinear control system; transitive Lie algebra; invariant foliation},
language = {fre},
pages = {285-293},
publisher = {Société mathématique de France},
title = {Décompositions en cascades des systèmes automatiques et feuilletages invariants},
url = {http://eudml.org/doc/87488},
volume = {113},
year = {1985},
}

TY - JOUR
AU - Fliess, Michel
TI - Décompositions en cascades des systèmes automatiques et feuilletages invariants
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 285
EP - 293
LA - fre
KW - cascade decomposition; nonlinear control system; transitive Lie algebra; invariant foliation
UR - http://eudml.org/doc/87488
ER -

References

top
  1. [1] CARTAN (E.). — Les groupes de transformations continus, infinis, simples, Ann. Scient. Éc. Norm. Sup., t. 26, 1909, p. 93-161 (œuvres complètes, partie II, p. 857-925, C.N.R.S., Paris, 1984). Zbl40.0193.02JFM40.0193.02
  2. [2] CLAUDE (D.), FLIESS (M.) et ISIDORI (A.). — Immersion, directe et par bouclage, d'un système non linéaire dans un linéaire, C.R. Acad. Sc., t. 296, 1983, série I, p. 237-240. Zbl0529.93030MR84c:58074
  3. [3] EILENBERG (S.). — Automata, Languages and Machines, vol. B, Academic Press, New York, 1976. Zbl0359.94067MR58 #26604b
  4. [4] FLIESS (M.). — Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math., vol. 71, 1983, p. 521-537. Zbl0513.93014MR85k:93020
  5. [5] FLIESS (M.). — Cascade decompositions of nonlinear systems, foliations and ideals of transitive Lie algebras, Systems Control Lett., vol. 5, 1984/1985, p. 263-265. Zbl0562.93040MR86h:93034
  6. [6] FLIESS (M.). — Cascade decompositions, invariant foliations and ideals of Lie algebras, Proc. 24th I.E.E.E. Control Decision Conf., Fort Lauderdale, FL, 1985. 
  7. [7] FLIESS (M.) and KUPKA (I.). — A finiteness criterion for nonlinear input-output differential systems, S.I.A.M.J. Control Optimiz., vol. 21, 1983, p. 721-728. Zbl0529.93031MR85i:93009
  8. [8] GRIZZLE (J. W.) and MARCUS (S. I.). — The structure of nonlinear control systems possessing symmetries, I.E.E.E. Trans. Automatic Control, vol. 30, 1985, p. 248-258. Zbl0562.93041MR86e:93030
  9. [9] GUILLEMIN (V.). — A Jordan-Hölder decomposition for a certain class of infinite-dimensional Lie algebras, J. Differential Geometry, vol. 2, 1968, p. 313-345. Zbl0183.26102MR41 #8481
  10. [10] HERMANN (R.) and KRENER (A. J.). — Nonlinear controllability and observability, I.E.E.E. Trans. Automatic Control, vol. 22, 1977, p. 728-740. Zbl0396.93015MR57 #15597
  11. [11] ISIDORI (A.). — Nonlinear control systems: an introduction, Lect. Notes Control Informat. Sc., vol. 72, Springer-Verlag, Berlin, 1985. Zbl0569.93034MR88f:93003
  12. [12] ISIDORI (A.), KRENER (A. J.), GORI-GIORGI (C.) and MONACO (S.). — Nonlinear decoupling via feedback: a differential geometric approach, I.E.E.E. Trans. Automatic Control, vol. 26, 1981, p. 331-345. Zbl0481.93037MR82e:93052
  13. [13] KRENER (A. J.). — A decomposition theory for differentiable systems, S.I.A.M. J. Control Optimiz., vol. 15, 1977, p. 813-829. Zbl0361.93023MR57 #18906
  14. [14] KROHN (K.) and RHODES (J. L.). — Algebraic theory of machines, I. Prime decomposition theorem for finite semigroups and machines, Trans. Amer. Math. Soc., vol. 116, 1965, p. 450-464. Zbl0148.01002MR32 #5755
  15. [15] KUMPERA (A.). — Suites de Jordan-Hölder et principales d'un groupe de Lie, J. Differential Geometry, vol. 15, 1980, p. 307-353. Zbl0483.22006MR83a:22017
  16. [16] MOLINO (P.). — Théorie des G-structures: le problème d'équivalence, Lect. Notes Math. 588, Springer-Verlag, Berlin, 1977. Zbl0357.53022MR58 #24419
  17. [17] NAGANO (T.). — Linear differential systems with singularities and an application to tansitive Lie algebras, J. Math. Soc. Japan, vol. 18, 1966, p. 398-404. Zbl0147.23502MR33 #8005
  18. [18] NIJMEIJER (H.) et VAN DER SCHAFT (A. J.). — Partial symmetries for nonlinear systems, Math. Systems Theory, vol. 18, 1985, p. 79-96. Zbl0585.93029MR86k:93071
  19. [19] POMMARET (J. F.). — Differential Galois Theory, Gordon and Breach, New York, 1983. Zbl0539.12013
  20. [20] RESPONDEK (W.). — On decomposition of nonlinear control systems, Systems Control Lett., vol. 1, 1982, p. 301-308. Zbl0499.93030MR83m:93032
  21. [21] RODRIGUES (A. M.). — Sur le noyau d'un pseudo-groupe de Lie infinitésimal involutif transitif par rapport à une fibration invariante, C.R. Acad. Sc., t. 269, 1969, série A, p. 1154-1155. Zbl0194.52704MR41 #2722
  22. [22] SINGER (I. M.) and STERNBERG (S.). — The infinite groups of Lie and Cartan, I, J. Analyse Math., vol. 15, 1965, p. 1-114. Zbl0277.58008MR36 #911
  23. [23] SUSSMANN (H. J.). — Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, R. W. BROCKETT, R. S. MILMAN and H. J. SUSSMANN, Eds., p. 1-116, Birkhäuser, Boston, 1983. Zbl0545.93002MR85e:93010

NotesEmbed ?

top

You must be logged in to post comments.