Décompositions en cascades des systèmes automatiques et feuilletages invariants

Michel Fliess

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 285-293
  • ISSN: 0037-9484

How to cite

top

Fliess, Michel. "Décompositions en cascades des systèmes automatiques et feuilletages invariants." Bulletin de la Société Mathématique de France 113 (1985): 285-293. <http://eudml.org/doc/87488>.

@article{Fliess1985,
author = {Fliess, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {cascade decomposition; nonlinear control system; transitive Lie algebra; invariant foliation},
language = {fre},
pages = {285-293},
publisher = {Société mathématique de France},
title = {Décompositions en cascades des systèmes automatiques et feuilletages invariants},
url = {http://eudml.org/doc/87488},
volume = {113},
year = {1985},
}

TY - JOUR
AU - Fliess, Michel
TI - Décompositions en cascades des systèmes automatiques et feuilletages invariants
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 285
EP - 293
LA - fre
KW - cascade decomposition; nonlinear control system; transitive Lie algebra; invariant foliation
UR - http://eudml.org/doc/87488
ER -

References

top
  1. [1] CARTAN (E.). — Les groupes de transformations continus, infinis, simples, Ann. Scient. Éc. Norm. Sup., t. 26, 1909, p. 93-161 (œuvres complètes, partie II, p. 857-925, C.N.R.S., Paris, 1984). Zbl40.0193.02JFM40.0193.02
  2. [2] CLAUDE (D.), FLIESS (M.) et ISIDORI (A.). — Immersion, directe et par bouclage, d'un système non linéaire dans un linéaire, C.R. Acad. Sc., t. 296, 1983, série I, p. 237-240. Zbl0529.93030MR84c:58074
  3. [3] EILENBERG (S.). — Automata, Languages and Machines, vol. B, Academic Press, New York, 1976. Zbl0359.94067MR58 #26604b
  4. [4] FLIESS (M.). — Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math., vol. 71, 1983, p. 521-537. Zbl0513.93014MR85k:93020
  5. [5] FLIESS (M.). — Cascade decompositions of nonlinear systems, foliations and ideals of transitive Lie algebras, Systems Control Lett., vol. 5, 1984/1985, p. 263-265. Zbl0562.93040MR86h:93034
  6. [6] FLIESS (M.). — Cascade decompositions, invariant foliations and ideals of Lie algebras, Proc. 24th I.E.E.E. Control Decision Conf., Fort Lauderdale, FL, 1985. 
  7. [7] FLIESS (M.) and KUPKA (I.). — A finiteness criterion for nonlinear input-output differential systems, S.I.A.M.J. Control Optimiz., vol. 21, 1983, p. 721-728. Zbl0529.93031MR85i:93009
  8. [8] GRIZZLE (J. W.) and MARCUS (S. I.). — The structure of nonlinear control systems possessing symmetries, I.E.E.E. Trans. Automatic Control, vol. 30, 1985, p. 248-258. Zbl0562.93041MR86e:93030
  9. [9] GUILLEMIN (V.). — A Jordan-Hölder decomposition for a certain class of infinite-dimensional Lie algebras, J. Differential Geometry, vol. 2, 1968, p. 313-345. Zbl0183.26102MR41 #8481
  10. [10] HERMANN (R.) and KRENER (A. J.). — Nonlinear controllability and observability, I.E.E.E. Trans. Automatic Control, vol. 22, 1977, p. 728-740. Zbl0396.93015MR57 #15597
  11. [11] ISIDORI (A.). — Nonlinear control systems: an introduction, Lect. Notes Control Informat. Sc., vol. 72, Springer-Verlag, Berlin, 1985. Zbl0569.93034MR88f:93003
  12. [12] ISIDORI (A.), KRENER (A. J.), GORI-GIORGI (C.) and MONACO (S.). — Nonlinear decoupling via feedback: a differential geometric approach, I.E.E.E. Trans. Automatic Control, vol. 26, 1981, p. 331-345. Zbl0481.93037MR82e:93052
  13. [13] KRENER (A. J.). — A decomposition theory for differentiable systems, S.I.A.M. J. Control Optimiz., vol. 15, 1977, p. 813-829. Zbl0361.93023MR57 #18906
  14. [14] KROHN (K.) and RHODES (J. L.). — Algebraic theory of machines, I. Prime decomposition theorem for finite semigroups and machines, Trans. Amer. Math. Soc., vol. 116, 1965, p. 450-464. Zbl0148.01002MR32 #5755
  15. [15] KUMPERA (A.). — Suites de Jordan-Hölder et principales d'un groupe de Lie, J. Differential Geometry, vol. 15, 1980, p. 307-353. Zbl0483.22006MR83a:22017
  16. [16] MOLINO (P.). — Théorie des G-structures: le problème d'équivalence, Lect. Notes Math. 588, Springer-Verlag, Berlin, 1977. Zbl0357.53022MR58 #24419
  17. [17] NAGANO (T.). — Linear differential systems with singularities and an application to tansitive Lie algebras, J. Math. Soc. Japan, vol. 18, 1966, p. 398-404. Zbl0147.23502MR33 #8005
  18. [18] NIJMEIJER (H.) et VAN DER SCHAFT (A. J.). — Partial symmetries for nonlinear systems, Math. Systems Theory, vol. 18, 1985, p. 79-96. Zbl0585.93029MR86k:93071
  19. [19] POMMARET (J. F.). — Differential Galois Theory, Gordon and Breach, New York, 1983. Zbl0539.12013
  20. [20] RESPONDEK (W.). — On decomposition of nonlinear control systems, Systems Control Lett., vol. 1, 1982, p. 301-308. Zbl0499.93030MR83m:93032
  21. [21] RODRIGUES (A. M.). — Sur le noyau d'un pseudo-groupe de Lie infinitésimal involutif transitif par rapport à une fibration invariante, C.R. Acad. Sc., t. 269, 1969, série A, p. 1154-1155. Zbl0194.52704MR41 #2722
  22. [22] SINGER (I. M.) and STERNBERG (S.). — The infinite groups of Lie and Cartan, I, J. Analyse Math., vol. 15, 1965, p. 1-114. Zbl0277.58008MR36 #911
  23. [23] SUSSMANN (H. J.). — Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, R. W. BROCKETT, R. S. MILMAN and H. J. SUSSMANN, Eds., p. 1-116, Birkhäuser, Boston, 1983. Zbl0545.93002MR85e:93010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.