A computation of the equivariant index of the Dirac operator

Nicole Berline; Michèle Vergne

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 305-345
  • ISSN: 0037-9484

How to cite

top

Berline, Nicole, and Vergne, Michèle. "A computation of the equivariant index of the Dirac operator." Bulletin de la Société Mathématique de France 113 (1985): 305-345. <http://eudml.org/doc/87490>.

@article{Berline1985,
author = {Berline, Nicole, Vergne, Michèle},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lefschetz fixed-point formulas; twisted Dirac operator; compact spin manifold; heat equation; frame bundle; exponential map},
language = {eng},
pages = {305-345},
publisher = {Société mathématique de France},
title = {A computation of the equivariant index of the Dirac operator},
url = {http://eudml.org/doc/87490},
volume = {113},
year = {1985},
}

TY - JOUR
AU - Berline, Nicole
AU - Vergne, Michèle
TI - A computation of the equivariant index of the Dirac operator
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 305
EP - 345
LA - eng
KW - Lefschetz fixed-point formulas; twisted Dirac operator; compact spin manifold; heat equation; frame bundle; exponential map
UR - http://eudml.org/doc/87490
ER -

References

top
  1. [1] ALVAREZ-GAUMÉ (L.), Supersymmetry and the Atiyah-Singer Index theorem, Commun. Math. Phys. Vol. 90, No. 101, 1983, pp. 161-173. Zbl0528.58034MR85d:58078
  2. [2] ATIYAH (M.F.), Circular symmetry and stationary phase approximation. In Proceedings of the Conference in honor of L. Schwartz, Asterisque, Paris, Vol. 131, 1985, pp. 43-60. Zbl0578.58039MR87h:58206
  3. [3] ATIYAH (M.F.) and BOTT (R.), A Lefschetz fixed point formula for elliptic complexes, I. Ann. Math., Vol. 86, 1967, pp. 374-407 ; II, 88, 1968, pp. 451-481. Zbl0161.43201MR35 #3701
  4. [4] ATIYAH (M.F.) and SEGAL (G.B.), The index of elliptic operators II, Ann. of Math., Vol. 87, 1968, pp. 531-545. Zbl0164.24201MR38 #5244
  5. [5] ATIYAH (M.F.) and SINGER (I.M.), The index of elliptic operators, I Ann. of Math., Vol. 87, 1968, pp. 484-530 ; III Ann. of Math., Vol. 87, 1968, pp. 546-604. Zbl0164.24301
  6. [6] BERGER (M.), GAUDUCHON (P.) and MAZET (E.), Le spectre d'une variété riemannienne, Lecture notes in Mathematics, 194, Springer-Verlag, Berlin-Heidelberg-New York. Zbl0223.53034
  7. [7] BERLINE (N.) and VERGNE (M.), The equivariant index and Kirillov's character formula, Amer. Math. Soc, Amer. J. of Math., Vol. 107, n° 5, 1985, pp. 1159-1190. Zbl0604.58046MR87a:58143
  8. [8] BERLINE (N.) and VERGNE (M.), Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, Comptes rendus Acad. Sc., Vol. 295, 1982, pp. 539-541. Zbl0521.57020MR83m:58002
  9. [9] BISMUT (J.M.), The Atiyah-Singer theorems. A Probabilistic approach. I The index theorem, J. Funct. Anal., Vol. 57, 1984, pp. 56-99. II The Lefschetz fixed point formulas, J. Funct. Anal., Vol. 57, 1984, pp. 329-348. Zbl0556.58027
  10. [10] DONNELLY (H.) and PATODI (V.K.), Spectrum and the fixed point set of Isometries II, Topology, Vol. 16, 1977, pp. 1-11. Zbl0341.53023MR55 #6489
  11. [11] FRIEDAN (D.) and WINDEY (H.), Supersymmetric Derivation of the Atiyah-Singer Index and the Chiral Anomaly, Nuclear Physics B., Vol. B., No. 235 (FS 11), 1984, pp. 395-416. MR89b:58198
  12. [12] GETZLER (E.), Pseudo differential operators on super manifolds and the Atiyah-Singer index theorem, Commun. Math. Phys., Vol. 92, 1983, pp. 163-178. Zbl0543.58026MR86a:58104
  13. [13] GETZLER (E.), A short proof of the Atiyah-Singer Index Theorem (To appear). Zbl0607.58040
  14. [14] GILKEY (P.), Curvature and eigenvalues of the Laplacian for elliptic complexes. Advances in Math., Vol. 10, 1973, pp. 344-382. Zbl0259.58010MR48 #3081
  15. [15] GILKEY (P.), Lefschetz fixed point formulas and the heat equation, in Partial Differential Equations and Geometry, Proceedings, Park-City Conference, 1977, Lecture Notes in Pure Appl. Math., No. 48, pp. 91-147, M. Dekker, New York, 1979. Zbl0405.58044
  16. [16] KIRILLOV (A.A.), Characters of unitary representations of Lie groups, Funct. Anal. App., Vol. 2-2, 1967, pp. 40-55. Zbl0174.45001MR38 #4615
  17. [17] LICHNEROWICZ (A.), Spineurs Harmoniques, C.R. Acad. Sc., Vol. 257, 1963, pp. 7-9. Zbl0136.18401MR27 #6218
  18. [18] MCKEAN (H.P.), SINGER (I.M.), Curvature and the eigenvalues of the Laplacian, J. Differential Geometry, Vol. 1, 1967, pp. 43-69. Zbl0198.44301MR36 #828
  19. [19] MINAKSHISUNDARAM (S.) and PLEUEL (A.), Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Canad. J. Math., Vol. 1, 1949, pp. 242-256. Zbl0041.42701MR11,108b
  20. [20] PATODI (V.K.), Curvature and the Eigenforms of the Laplace Operators, J. Diff. Geometry, Vol. 5, 1971, pp. 233-249. Zbl0211.53901MR45 #1201
  21. [21] PATODI (V.K.), Analytic proof of the Riemann-Roch theorem for Kaehler manifolds, J. Diff. Geometry, Vol. 5, 1971, pp. 251-283. Zbl0219.53054MR44 #7502
  22. [22] VERGNE (M.), Formule de Kirillov et indice de l'opérateur de Dirac, Proceedings of the International Congress of Mathematicians, 1983, Warszawa. Zbl0597.58033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.