Geometry of twisting cochains

N. R. O'Brian

Compositio Mathematica (1987)

  • Volume: 63, Issue: 1, page 41-62
  • ISSN: 0010-437X

How to cite

top

O'Brian, N. R.. "Geometry of twisting cochains." Compositio Mathematica 63.1 (1987): 41-62. <http://eudml.org/doc/89851>.

@article{OBrian1987,
author = {O'Brian, N. R.},
journal = {Compositio Mathematica},
keywords = {Todd class; Hirzebruch-Riemann-Roch; twisting cochain; Hilbert space; operator-valued symbol; finite section method; Banach space; operators; singular integral operators},
language = {eng},
number = {1},
pages = {41-62},
publisher = {Martinus Nijhoff Publishers},
title = {Geometry of twisting cochains},
url = {http://eudml.org/doc/89851},
volume = {63},
year = {1987},
}

TY - JOUR
AU - O'Brian, N. R.
TI - Geometry of twisting cochains
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 1
SP - 41
EP - 62
LA - eng
KW - Todd class; Hirzebruch-Riemann-Roch; twisting cochain; Hilbert space; operator-valued symbol; finite section method; Banach space; operators; singular integral operators
UR - http://eudml.org/doc/89851
ER -

References

top
  1. 1 M.F. Atiyah: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc.85 (1957) 181-207. Zbl0078.16002MR86359
  2. 2 P.F. Baum and R. Bott: On the zeros of meromorphic vector fields. Essays on topology and related topics, memoires dédiés à Georges de Rham. Springer, Berlin, Heidelberg, New York (1970) 29-47. Zbl0193.52201MR261635
  3. 3 N. Berline and M. Vergne: A computation of the equivariant index of the Dirac operator. Bull. Soc. Math. France113 (1985) 305-345. Zbl0592.58044MR834043
  4. 4 J.-M. Bismuth: The Atiyah-Singer Theorems: a probabilistic approach. I. The index theorem. J. Functional Analysis57 (1984) 56-99. Zbl0538.58033MR744920
  5. 5 E. Getzler: Pseudodifferential operators on supermanifolds and the Atiyah-Singer Index theorem. Commun. Math. Phys.92 (1983) 163-178. Zbl0543.58026MR728863
  6. 6 V. Guillemin and S. Sternberg: Geometric Asymptotics. A.M.S. Mathematical Surveys14 (1977). Zbl0364.53011MR516965
  7. 7 N.R. O'Brian, D. Toledo and Y.L.L. Tong: The trace map and characteristic classes for coherent sheaves. Am. J. Math.103 (1981) 225-252. Zbl0473.14008MR610475
  8. 8 N.R. O'Brian, D. Toledo and Y.L.L. Tong: Hirzebruch-Riemann-Roch for coherent sheaves. Am. J. Math.103 (1981) 253-271. Zbl0474.14009MR610476
  9. 9 N.R. O'Brian, D. Toledo and Y.L.L. Tong: A Grothendieck-Riemann-Roch formula for maps of complex manifolds. Math. Ann.271 (1985) 493-526. Zbl0539.14005MR790113
  10. 10 V.K. Patodi: An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Diff. Geometry5 (1971) 251-283. Zbl0219.53054MR290318
  11. 11 D. Toledo and Y.L.L. Tong: A parametrix for ∂ and Riemann-Roch in Čech theory. Topology15 (1976) 273-301. Zbl0355.58014
  12. 12 D. Toledo and Y.L.L. Tong: Duality and intersection theory in complex manifolds I. Math. Ann.237 (1978) 41-77. Zbl0391.32008MR506654
  13. 13 D. Toledo and Y.L.L. Tong: Duality and intersection theory in complex manifolds II, the holomorphic Lefschetz formula. Ann. Math.108 (1978) 518-538. Zbl0413.32006MR512431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.