Formes harmoniques et cohomologie relative des algèbres de Lie

Annie Hersant

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 359-377
  • ISSN: 0037-9484

How to cite

top

Hersant, Annie. "Formes harmoniques et cohomologie relative des algèbres de Lie." Bulletin de la Société Mathématique de France 113 (1985): 359-377. <http://eudml.org/doc/87492>.

@article{Hersant1985,
author = {Hersant, Annie},
journal = {Bulletin de la Société Mathématique de France},
keywords = {relative cohomology; harmonic forms; unimodular Lie group; complex Lie algebra; Poincaré duality},
language = {fre},
pages = {359-377},
publisher = {Société mathématique de France},
title = {Formes harmoniques et cohomologie relative des algèbres de Lie},
url = {http://eudml.org/doc/87492},
volume = {113},
year = {1985},
}

TY - JOUR
AU - Hersant, Annie
TI - Formes harmoniques et cohomologie relative des algèbres de Lie
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 359
EP - 377
LA - fre
KW - relative cohomology; harmonic forms; unimodular Lie group; complex Lie algebra; Poincaré duality
UR - http://eudml.org/doc/87492
ER -

References

top
  1. [1] BOREL (A.) and WALLACH (N.). — Continuous cohomology, discrete subgroups and representations of reductive groups, Study n° 94, Princeton, 1980. Zbl0443.22010MR83c:22018
  2. [2] CONNES (A.) and MOSCOVICI (H.). — The L2-index theorem for homogeneous spaces of Lie groups, Ann. of Math., vol. 115, 1982, p. 291-330. Zbl0515.58031MR84f:58108
  3. [3] DIXMIER (J.). — Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR30 #1404
  4. [4] DUFLO (M.). — Construction de représentations unitaires d'un groupe de Lie, dans Harmonic Analysis and Group Representations, Liguoni, Napoli, 1982. MR87b:22028
  5. [5] GOODMAN (R.). — One parameter-groups generated by operators in an enveloping algebra, J. Funct. Anal., vol. 6, 1970, p. 218-236. Zbl0203.44202MR42 #3229
  6. [6] HELGASON (S.). — Differential geometry and symmetric spaces, Academic Press, New York, 1962. Zbl0111.18101MR26 #2986
  7. [7] HERSANT (A.). — Formes harmoniques et cohomologie relative des algèbres de Lie, J. Reine Angew. Math., vol. 344, 1983, p. 71-86. Zbl0512.58006MR86a:22030
  8. [8] KOORNWINDER (T. H.). — Invariant differential operators on non-reductive homogeneous spaces, Preprint, Mathematisch Centrum, Amsterdam, 1981. Zbl0454.22006MR82g:43011
  9. [9] KOSZUL (J. L.). — Homologie et cohomologie des algèbres de Lie, Bull. SMF, vol. 78, 1950, p. 65-127. Zbl0039.02901MR12,120g
  10. [10] PENNEY (R.). — Harmonically induced representations on nilpotent Lie groups and automorphic forms on nilmanifolds, Trans. Amer. Math. Soc., vol. 260, 1980, p. 123-145. Zbl0439.22012MR81h:22008
  11. [11] N. S. POULSEN. — On C;-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal., vol. 9, 1972, p. 87-120. Zbl0237.22013MR46 #9239
  12. [12] ROSENBERG (J.). — Realization of square-integrable representations of unimodular Lie groups on L2-cohomology spaces, Trans. Amer. Math. Soc., vol. 261, 1980, p. 1-32. Zbl0446.22010MR81k:22012
  13. [13] ROSENBERG (J.) and VERGNE (M.). — Harmonically induced representations of solvable Lie groups, Preprint I.H.E.S., 1984. 
  14. [14] SCHMID (W.). — On a conjecture of Langlands, Ann. of Math., vol. 93, 1971, p. 1-42. Zbl0291.43013MR44 #4149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.