Odd values of the Ramanujan -function

M.Ram Murty; V.Kumar Murty; T.N. Shorey

Bulletin de la Société Mathématique de France (1987)

  • Volume: 115, page 391-395
  • ISSN: 0037-9484

How to cite

top

Murty, M.Ram, Murty, V.Kumar, and Shorey, T.N.. "Odd values of the Ramanujan $\tau $-function." Bulletin de la Société Mathématique de France 115 (1987): 391-395. <http://eudml.org/doc/87539>.

@article{Murty1987,
author = {Murty, M.Ram, Murty, V.Kumar, Shorey, T.N.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Ramanujan tau-function; linear forms in logarithms; diophantine analysis; Baker's method; conjecture of Atkin and Serre; Fourier coefficient; cusp form of weight 12},
language = {eng},
pages = {391-395},
publisher = {Société mathématique de France},
title = {Odd values of the Ramanujan $\tau $-function},
url = {http://eudml.org/doc/87539},
volume = {115},
year = {1987},
}

TY - JOUR
AU - Murty, M.Ram
AU - Murty, V.Kumar
AU - Shorey, T.N.
TI - Odd values of the Ramanujan $\tau $-function
JO - Bulletin de la Société Mathématique de France
PY - 1987
PB - Société mathématique de France
VL - 115
SP - 391
EP - 395
LA - eng
KW - Ramanujan tau-function; linear forms in logarithms; diophantine analysis; Baker's method; conjecture of Atkin and Serre; Fourier coefficient; cusp form of weight 12
UR - http://eudml.org/doc/87539
ER -

References

top
  1. [1] BAKER (A.), A sharpening of the bounds for linear forms in logarithms I, Acta Arith., Vol. 21, 1972, pp. 117-129. Zbl0244.10031MR46 #1717
  2. [2] BAKER (A.), A sharpening of the bounds for linear forms in logarithms II, Acta Arith., Vol. 24, 1973, pp. 33-36. Zbl0261.10025MR51 #12724
  3. [3] FELDAM (N. L.), An effective refinement of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk., Vol. 35, 1971, pp. 973-900. 
  4. [4] RAMANUJAN (S.), On certain arithmetical functions, Trans. Cambr. Phil. Soc., Vol. 22, 1916, pp. 159-184. 
  5. [5] ROTH (K. F.), Rational approximations to algebraic numbers, Mathematika, Vol. 2, 1955, pp. 1-20. Zbl0064.28501MR17,242d
  6. [6] SERRE (J.-P.), Divisibilité de certaines fonction arithmétiques, L'Ens. Math., Vol. 22, 1976, pp. 227-260. Zbl0355.10021MR55 #7958
  7. [7] SPRINDZUK (V. G.), Hyperelliptic diophantine equations and class numbers of ideals (Russian), Acta Arith., Vol. 30, 1976, pp. 95-108. Zbl0335.10021MR54 #5111

NotesEmbed ?

top

You must be logged in to post comments.