On the cohomology of nilpotent Lie algebras

Ch. Deninger; W. Singhof

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 1, page 3-14
  • ISSN: 0037-9484

How to cite

top

Deninger, Ch., and Singhof, W.. "On the cohomology of nilpotent Lie algebras." Bulletin de la Société Mathématique de France 116.1 (1988): 3-14. <http://eudml.org/doc/87547>.

@article{Deninger1988,
author = {Deninger, Ch., Singhof, W.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {lower bounds; dimension of total cohomology; nilpotent Lie algebras; graded Lie algebras; Morava stabilizer algebras},
language = {eng},
number = {1},
pages = {3-14},
publisher = {Société mathématique de France},
title = {On the cohomology of nilpotent Lie algebras},
url = {http://eudml.org/doc/87547},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Deninger, Ch.
AU - Singhof, W.
TI - On the cohomology of nilpotent Lie algebras
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 1
SP - 3
EP - 14
LA - eng
KW - lower bounds; dimension of total cohomology; nilpotent Lie algebras; graded Lie algebras; Morava stabilizer algebras
UR - http://eudml.org/doc/87547
ER -

References

top
  1. [1] BOTT (R.). — Homogeneous vector bundles, Ann. of Math., t. 66, 1957, p. 203-248. Zbl0094.35701MR19,681d
  2. [2] BREDON (G.E.) and KOSINSKI (A.). — Vector fields on л-manifolds, Ann. of Math., t. 84, 1966, p. 85-90. Zbl0151.31701MR34 #823
  3. [3] CASSELMAN (W.) and OSBORNE (M.S.). — The n-cohomology of representations with an infinitesimal character, Comp. Math., t. 31, 1975, p. 219-227. Zbl0343.17006MR53 #566
  4. [4] DIXMIER (J.). — Cohomologie des algèbres de Lie nilpotentes, Acta Sci. Math. Szeged, t. 16, 1955, p. 246-250. Zbl0066.02403MR17,645b
  5. [5] DIXMIER (J.). — Sur les représentations unitaires des groupes de Lie nilpotents III, Canad. J. Math., t. 10, 1958, p. 321-348. Zbl0100.32401MR20 #1929
  6. [6] DWYER (W.G.). — Homology of integral upper-triangular matrices, Proc. Amer. Math. Soc., t. 94, 1985, p. 523-528. Zbl0568.55018MR87i:55037
  7. [7] FAVRE (G.). — Une algèbre de Lie caractéristiquement nilpotente de dimension 7, C. R. Acad. Sci. Paris Sér. A-B Math., t. 274, 1972, p. 1338-1339. Zbl0236.17003MR45 #3495
  8. [8] HALPERIN (S.). — Rational homotopy and torus actions, Aspects of Topology, [I.M. James and E.H. Kronheimer, ed.], p. 293-306. — Cambridge, 1985 (London Math. Soc. Lecture Notes, 93). Zbl0562.57015MR87d:55001
  9. [9] HARTSHORNE (R.). — Algebraic Geometry. — Berlin-Heidelberg-New-York, 1977. Zbl0367.14001MR57 #3116
  10. [10] LUSZTIG (G.) and MILNOR (J.) and PETERSON (F.). — Semicharacteristics and cobordism., Topology, t. 8, 1969, p. 357-359. Zbl0165.26302MR39 #7612
  11. [11] MAL'CEV (A.I.). — On a class of homogeneous spaces, Amer. Math. Soc. Transl. Ser. 1, t. 9, 1962, p. 276-307. 
  12. [12] MORAVA (J.). — Noetherian localisations of categories of cobordism comodules, Ann. of Math., t. 121, 1985, p. 1-39. Zbl0572.55005MR86g:55004
  13. [13] RAVENEL (D.C.). — The structure of Morava stabilizer algebras, Invent. Math., t. 37, 1976, p. 109-120. Zbl0317.57019MR54 #8632
  14. [14] RAVENEL (D.C.). — The cohomology of the Morava stabilizer algebras, Math. Z, t. 152, 1977, p. 287-297. Zbl0338.55018MR55 #4170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.