Symmetric and asymmetric Diophantine approximation of continued fractions

Jingcheng Tong

Bulletin de la Société Mathématique de France (1989)

  • Volume: 117, Issue: 1, page 59-67
  • ISSN: 0037-9484

How to cite

top

Tong, Jingcheng. "Symmetric and asymmetric Diophantine approximation of continued fractions." Bulletin de la Société Mathématique de France 117.1 (1989): 59-67. <http://eudml.org/doc/87572>.

@article{Tong1989,
author = {Tong, Jingcheng},
journal = {Bulletin de la Société Mathématique de France},
keywords = {symmetric approximation; asymmetric approximation; consecutive convergents; simple continued fraction expansion; symmetric and asymmetric inequalities},
language = {eng},
number = {1},
pages = {59-67},
publisher = {Société mathématique de France},
title = {Symmetric and asymmetric Diophantine approximation of continued fractions},
url = {http://eudml.org/doc/87572},
volume = {117},
year = {1989},
}

TY - JOUR
AU - Tong, Jingcheng
TI - Symmetric and asymmetric Diophantine approximation of continued fractions
JO - Bulletin de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 117
IS - 1
SP - 59
EP - 67
LA - eng
KW - symmetric approximation; asymmetric approximation; consecutive convergents; simple continued fraction expansion; symmetric and asymmetric inequalities
UR - http://eudml.org/doc/87572
ER -

References

top
  1. [1] BAGEMIHL (F.) and MCLAUGHLIN (J.R.). — Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions, J. Reine Angew. Math., t. 221, 1966, p. 146-149. Zbl0135.11104MR32 #1475
  2. [2] BOREL (E.). — Contribution à l'analyse arithmétique du continu, J. Math. Pures Appl., t. 9, 1903, p. 329-375. Zbl34.0239.01JFM34.0239.01
  3. [3] LEJEUNE DIRICHLET (G.P.). — Werke Bd I, II. — Berlin, Reimer 1889, 1897. 
  4. [4] FUJIWARA (M.). — Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen, Tôhoku Math. J., t. 14, 1918, p. 109-115. JFM46.0278.05
  5. [5] HURWITZ (A.). — Über die angenäherte Darstellung der irrationalzahlen durch rationale Brüche, Math. Ann., t. 39, 1891, p. 279-284. JFM23.0222.02
  6. [6] LEVEQUE (W.J.). — On asymmetric approximations, Michigan Math. J., t. 2, 1953, p. 1-6. Zbl0059.03901MR16,18b
  7. [7] MÜLLER (M.). — Über die Approximation reeller Zahlen durch die Näherungsbrüche ihres regelmässigen Kettenbruches, Arch. Math., t. 6, 1955, p. 253-258. Zbl0064.04401
  8. [8] PERRON (O.). — Die Lehre von den Kettenbrüchen I, II. — Leipzig, 3rd ed. Teubner, 1954. 
  9. [9] ROBINSON (R.M.). — Unsymmetric approximation of irrational numbers, Bull. Amer. Math. Soc., t. 53, 1947, p. 351-361. Zbl0032.40003MR8,566b
  10. [10] SEGRE (B.). — Lattice points in infinite domains and asymmetric Diophantine approximation, Duke Math. J., t. 12, 1945, p. 337-365. Zbl0060.11807MR6,258a
  11. [11] SZÜSZ (P.). — On a theorem of Segre, Acta Arith., t. 23, 1973, p. 371-377. Zbl0236.10018MR49 #8942
  12. [12] TONG (J.). — The conjugate property of the Borel theorem on Diophantine approximation, Math. Z., t. 184, 1983, p. 151-153. Zbl0497.10024MR85m:11039
  13. [13] TONG (J.). — On two theorems of Kopetzky and Schnitzer on the approximation of continued fractions, J. Reine Angew. Math., t. 362, 1985, p. 1-3. Zbl0568.10019MR87g:11081
  14. [14] TONG (J.). — A theorem on approximation of irrational numbers by simple continued fractions, Proc. Edinburgh Math. Soc., t. 31, 1988, p. 197-204. Zbl0645.10008MR90e:11101
  15. [15] TONG (J.). — Segre's theorem on asymmetric Diophantine approximation, J. Number Theory, t. 28, 1988, p. 116-118. Zbl0645.10009MR89h:11033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.