Counting points of small height on elliptic curves

D.W. Masser

Bulletin de la Société Mathématique de France (1989)

  • Volume: 117, Issue: 2, page 247-265
  • ISSN: 0037-9484

How to cite

top

Masser, D.W.. "Counting points of small height on elliptic curves." Bulletin de la Société Mathématique de France 117.2 (1989): 247-265. <http://eudml.org/doc/87578>.

@article{Masser1989,
author = {Masser, D.W.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {elliptic curve; absolute logarithmic canonical height; non-torsion point},
language = {eng},
number = {2},
pages = {247-265},
publisher = {Société mathématique de France},
title = {Counting points of small height on elliptic curves},
url = {http://eudml.org/doc/87578},
volume = {117},
year = {1989},
}

TY - JOUR
AU - Masser, D.W.
TI - Counting points of small height on elliptic curves
JO - Bulletin de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 117
IS - 2
SP - 247
EP - 265
LA - eng
KW - elliptic curve; absolute logarithmic canonical height; non-torsion point
UR - http://eudml.org/doc/87578
ER -

References

top
  1. [AM] ANDERSON (M.) and MASSER (D.W.). — Lower bounds for heights on elliptic curves, Math. Z., t. 174, 1980, p. 23-34. Zbl0421.14006MR82g:10049
  2. [BM] BROWNAWELL (W.D.) and MASSER (D.W.). — Multiplicity estimates for analytic functions I, J. Reine Angew. Math., t. 314, 1979, p. 200-216. Zbl0417.10027MR81j:10046a
  3. [C] COHEN (P.). — Explicit calculation of some effective constants in transcendence proofs, Ph. D. Thesis, University of Nottingham, 1985, Chapter 3. 
  4. [Da] DAVID (S.). — Fonctions thêta et points de torsion des variétés abéliennes, C. R. Acad. Sci. Paris, t. 305, 1987, p. 211-214. Zbl0628.14035MR89b:11047
  5. [Do] DOBROWOLSKI (E.). — On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., t. 34, 1979, p. 391-401. Zbl0416.12001MR80i:10040
  6. [FP] FAISANT (A.) and PHILIBERT (G.). — Quelques résultats de transcendance liés à l'invariant modulaire j, J. Number Theory, t. 25, 1987, p. 184-200. Zbl0633.10035MR88f:11066
  7. [H] HINDRY (M.). — Géométrie et hauteurs dans les groupes algébriques, Thèse de Doctorat de l'Université Paris VI, 1987. 
  8. [I] IGUSA (J.). — Theta functions. — Berlin-Heidelberg-New York, Springer-Verlag, 1972. Zbl0251.14016MR48 #3972
  9. [L] LAURENT (M.). — Minoration de la hauteur de Néron-Tate, [Séminaire de Théorie de Nombres, Paris 1981 — 2], Boston-Basel-Stuttgart, Birkhäuser, 1983, pp. 137-152. Zbl0521.14010MR85e:11048
  10. [M] MASSER (D.W.). — Division fields of elliptic functions, Bull. London Math. Soc., t. 9, 1977, p. 49-53. Zbl0356.12018MR56 #2922
  11. [M′] MASSER (D.W.). — Small values of heights on families of abelian varieties, [Lecture Notes in Math., vol. 1290], New York-Berlin-Heidelberg-Tokyo, Springer-Verlag, 1987, pp. 109-148. Zbl0639.14025MR89g:11048
  12. [S] SILVERMAN (J.H.). — Lower bounds for the canonical height on elliptic curves, Duke Math. J., t. 48, 1981, p. 633-648. Zbl0475.14033MR82k:14043
  13. [S′] SILVERMAN (J.H.). — The arithmetic of elliptic curves. — New York-Berlin-Heidelberg-Tokyo, Springer-Verlag, 1986. Zbl0585.14026MR87g:11070
  14. [Z] ZIMMER (H.G.). — On the difference of the Weil height and the Néron-Tate height, Math. Z., t. 147, 1976, p. 35-51. Zbl0303.14003MR54 #7476
  15. [Z′] ZIMMER (H.G.). — Quasi-functions on elliptic curves over number fields, J. Reine Angew. Math., t. 307, 1979, p. 221-246. Zbl0399.14014MR80g:14024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.