Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques

François Labourie

Bulletin de la Société Mathématique de France (1991)

  • Volume: 119, Issue: 3, page 307-325
  • ISSN: 0037-9484

How to cite

top

Labourie, François. "Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques." Bulletin de la Société Mathématique de France 119.3 (1991): 307-325. <http://eudml.org/doc/87627>.

@article{Labourie1991,
author = {Labourie, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {core of Nielsen; constant Gaussian curvature; convex boundary},
language = {fre},
number = {3},
pages = {307-325},
publisher = {Société mathématique de France},
title = {Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques},
url = {http://eudml.org/doc/87627},
volume = {119},
year = {1991},
}

TY - JOUR
AU - Labourie, François
TI - Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 3
SP - 307
EP - 325
LA - fre
KW - core of Nielsen; constant Gaussian curvature; convex boundary
UR - http://eudml.org/doc/87627
ER -

References

top
  1. [B] BERGER (M.S.). — Riemaniannian Structure of prescibed Gaussian Curvature for compact 2-Manifolds, J. Differential Geometry, t. 5, 1971, p. 325-332. Zbl0222.53042MR45 #4329
  2. [C-E-G] CANARY (R.D.), EPSTEIN (D.B.A.) and GREEN (P.). — Notes on notes of Thurston, in Analytical and geometric aspects of hyperbolic spaces, London Mathematical Society Lecture Notes 111, (D.B.A. Epstein Ed.), Cambridge University Press, Cambridge, 1987, p. 3-92. Zbl0612.57009MR89e:57008
  3. [D] DELANOË (P.). — Plongements radiaux à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup. (4), t. 18, 1985, p. 635-649. Zbl0594.53039MR87j:53011
  4. [G] GROMOV (M.). — Pseudo-holomorphic curves in almost complex manifolds, Invent. Math., t. 82, 1985, p. 307-347. Zbl0592.53025MR87j:53053
  5. [B-G-S] BALLMAN (W.), GROMOV (M.) and SCHROEDER (V.). — Manifolds of non-positive-curvature. — Birkhauser studies, 1985. Zbl0569.53021
  6. [H] HAMILTON (R.S.). — The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), t. 7, 1, 1982, p. 65-222. Zbl0499.58003MR83j:58014
  7. [L1] LABOURIE (F.). — Immersions isométriques elliptiques et courbes pseudo-holomorphes, J. Diff. Geom., t. 30, 1989, p. 395-424. Zbl0682.53063MR90k:53097
  8. [L2] LABOURIE (F.). — Surfaces convexes dans l'espace hyperbolique et CP1-structures, à paraître dans J. London Math. Soc.. Zbl0767.53011
  9. [M] MORGAN (J.W.). — Uniformization theorem for 3-dimensional manifolds, chapter 5 in Proceedings on the Smith Conjecture Symposium, Ed. J.W. Morgan and H. Bass, Academic Press, 1984. Zbl0599.57002MR758464
  10. [N] NIRENBERG (L.). — The Weyl and Minkowski problem in differential geometry in the large, Comm. Pure Appl. Math., t. 6, 3, 1953, p. 337-394. Zbl0051.12402MR15,347b
  11. [O] OLIKER (V.I.). — Hypersurfaces in ȑn+1 with prescribed Gaussian curvature and related equations of Monge-Ampère type, Comm. Partial Differential Equations, t. 9, 8, 1984, p. 807-838. Zbl0559.58031MR85h:53047
  12. [P] PANSU (P.). — Notes sur la démonstration du théorème de compacité des courbes cusps de Gromov, preprint à paraître. 
  13. [Po] POGORELOV (A.V.). — Extrinsic geometry of convex surfaces. — Israel program for scientific translation, Jerusalem, 1973. Zbl0311.53067MR49 #11439
  14. [S] SPIVAK (M.). — A comprehensive introduction to differential geometry. — Publish or Perish, Boston, 1975. 
  15. [T] THURSTON (T.). — Geometry and topology of 3-manifolds, chapter 8, Mimeographic notes. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.