Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques
Bulletin de la Société Mathématique de France (1991)
- Volume: 119, Issue: 3, page 307-325
- ISSN: 0037-9484
Access Full Article
topHow to cite
topLabourie, François. "Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques." Bulletin de la Société Mathématique de France 119.3 (1991): 307-325. <http://eudml.org/doc/87627>.
@article{Labourie1991,
author = {Labourie, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {core of Nielsen; constant Gaussian curvature; convex boundary},
language = {fre},
number = {3},
pages = {307-325},
publisher = {Société mathématique de France},
title = {Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques},
url = {http://eudml.org/doc/87627},
volume = {119},
year = {1991},
}
TY - JOUR
AU - Labourie, François
TI - Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 3
SP - 307
EP - 325
LA - fre
KW - core of Nielsen; constant Gaussian curvature; convex boundary
UR - http://eudml.org/doc/87627
ER -
References
top- [B] BERGER (M.S.). — Riemaniannian Structure of prescibed Gaussian Curvature for compact 2-Manifolds, J. Differential Geometry, t. 5, 1971, p. 325-332. Zbl0222.53042MR45 #4329
- [C-E-G] CANARY (R.D.), EPSTEIN (D.B.A.) and GREEN (P.). — Notes on notes of Thurston, in Analytical and geometric aspects of hyperbolic spaces, London Mathematical Society Lecture Notes 111, (D.B.A. Epstein Ed.), Cambridge University Press, Cambridge, 1987, p. 3-92. Zbl0612.57009MR89e:57008
- [D] DELANOË (P.). — Plongements radiaux à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup. (4), t. 18, 1985, p. 635-649. Zbl0594.53039MR87j:53011
- [G] GROMOV (M.). — Pseudo-holomorphic curves in almost complex manifolds, Invent. Math., t. 82, 1985, p. 307-347. Zbl0592.53025MR87j:53053
- [B-G-S] BALLMAN (W.), GROMOV (M.) and SCHROEDER (V.). — Manifolds of non-positive-curvature. — Birkhauser studies, 1985. Zbl0569.53021
- [H] HAMILTON (R.S.). — The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), t. 7, 1, 1982, p. 65-222. Zbl0499.58003MR83j:58014
- [L1] LABOURIE (F.). — Immersions isométriques elliptiques et courbes pseudo-holomorphes, J. Diff. Geom., t. 30, 1989, p. 395-424. Zbl0682.53063MR90k:53097
- [L2] LABOURIE (F.). — Surfaces convexes dans l'espace hyperbolique et CP1-structures, à paraître dans J. London Math. Soc.. Zbl0767.53011
- [M] MORGAN (J.W.). — Uniformization theorem for 3-dimensional manifolds, chapter 5 in Proceedings on the Smith Conjecture Symposium, Ed. J.W. Morgan and H. Bass, Academic Press, 1984. Zbl0599.57002MR758464
- [N] NIRENBERG (L.). — The Weyl and Minkowski problem in differential geometry in the large, Comm. Pure Appl. Math., t. 6, 3, 1953, p. 337-394. Zbl0051.12402MR15,347b
- [O] OLIKER (V.I.). — Hypersurfaces in ȑn+1 with prescribed Gaussian curvature and related equations of Monge-Ampère type, Comm. Partial Differential Equations, t. 9, 8, 1984, p. 807-838. Zbl0559.58031MR85h:53047
- [P] PANSU (P.). — Notes sur la démonstration du théorème de compacité des courbes cusps de Gromov, preprint à paraître.
- [Po] POGORELOV (A.V.). — Extrinsic geometry of convex surfaces. — Israel program for scientific translation, Jerusalem, 1973. Zbl0311.53067MR49 #11439
- [S] SPIVAK (M.). — A comprehensive introduction to differential geometry. — Publish or Perish, Boston, 1975.
- [T] THURSTON (T.). — Geometry and topology of 3-manifolds, chapter 8, Mimeographic notes.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.