A note on functional equations of the -adic polylogarithms
Bulletin de la Société Mathématique de France (1991)
- Volume: 119, Issue: 3, page 343-370
- ISSN: 0037-9484
Access Full Article
topHow to cite
topWojtkowiak, Zdzisław. "A note on functional equations of the $p$-adic polylogarithms." Bulletin de la Société Mathématique de France 119.3 (1991): 343-370. <http://eudml.org/doc/87629>.
@article{Wojtkowiak1991,
author = {Wojtkowiak, Zdzisław},
journal = {Bulletin de la Société Mathématique de France},
keywords = {functional equation for polylogarithms; complex polylogarithms; -adic polylogarithms},
language = {eng},
number = {3},
pages = {343-370},
publisher = {Société mathématique de France},
title = {A note on functional equations of the $p$-adic polylogarithms},
url = {http://eudml.org/doc/87629},
volume = {119},
year = {1991},
}
TY - JOUR
AU - Wojtkowiak, Zdzisław
TI - A note on functional equations of the $p$-adic polylogarithms
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 3
SP - 343
EP - 370
LA - eng
KW - functional equation for polylogarithms; complex polylogarithms; -adic polylogarithms
UR - http://eudml.org/doc/87629
ER -
References
top- [A] ABEL (N.H.). — Note sur la fonction Ѱ(x) = x + x²/2² + x³/3² + ..., Oeuvres, Bd. II, pp. 189-193.
- [An] ANDRE (Y.). — Quatre descriptions des groupes de Galois différentiels, Proceedings of the Séminaire d'algèbre de Paris, Lecture Notes in Math. 1296, Springer-Verlag. Zbl0651.12015MR89e:12012
- [C] COLEMAN (R.F.). — Dilogarithms, Regulators and p-adic L-functions, Invent. Math., t. 69, 1982, p. 171-208. Zbl0516.12017MR84a:12021
- [Ca] CARTIER (P.). — Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Séminaire Bourbaki, 1987-1988, 687, Astérisque, pp. 161-162, 1988. Zbl0688.14036
- [Ch] CHEN (K.T.). — Algebra of iterated path integrals and fundamental groups, Trans. Amer. Math. Soc., t. 156, 1971, p. 359-379. Zbl0217.47705MR43 #1069
- [D1] DELIGNE (P.). — Le groupe fondamental de la droite projective moins trois points, in Galois Groups over Q, Springer-Verlag New York, 1989. Zbl0742.14022MR90m:14016
- [D2] DELIGNE (P.). — Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs.
- [L1] LEWIN (L.). — Polylogarithms and Associated Functions. — North Holland, New York-Oxford, 1981. Zbl0465.33001MR83b:33019
- [L2] LEWIN (L.). — The order-independence of the polylogarithmic ladder structure, implications for a new category of functional equations, Aequationes Math., t. 30, 1986, p. 1-20. Zbl0606.39005MR87i:33039
- [MKS] MAGNUS (W.), KARRASS (A.) and SOLITAR (D.). — Combinatorial Group Theory, Pure and Applied Mathematics, volume XIII, Interscience Publishers, 1966, John Wiley and Sons, Inc..
- [R] ROGERS (L.J.). — On function sum theorems connected with the series ∞∑n=1 xn/n², Proc. London Math. Soc.(2), t. 4, 1907, p. 169-189. JFM37.0428.03
- [S] SANDHAM (H.F.). — A Logarithmic Transcendent, J. London Math. Soc., t. 24, 1949, p. 83-91. Zbl0036.32501MR11,433b
- [W1] WOJTKOWIAK (Z.). — A note on the functional equation of the dilogarithm, preprint 1, CRM (Bellaterra), 1984.
- [W2] WOJTKOWIAK (Z.). — A note on functional equation of polylogarithms, preprint 22, MPI, 1990.
- [W3] WOJTKOWIAK (Z.). — The basic structure of polylogarithmic functional equations, preprint 88, MPI, 1990.
- [W4] WOJTKOWIAK (Z.). — A construction of analogs of the Bloch-Wigner function, Math. Scand., t. 65, 1989, p. 140-142. Zbl0698.33002MR92b:11084
- [Z1] ZAGIER (D.). — Polylogarithms, Dedekind zeta function and the algebraic K-theory of fields, preprint 44, MPI, 1990.
- [Z2] ZAGIER (D.). — The remarkable dilogarithm, J. Math. Phys. Sci., t. 22, 1988, p. 131-145. Zbl0669.33001MR89f:33024
- [Z3] ZAGIER (D.). — The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Ann., t. 28, 1990, p. 613-624. Zbl0698.33001MR90k:11153
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.