The syntomic regulator for the K-theory of fields

Amnon Besser; Rob de Jeu

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 6, page 867-924
  • ISSN: 0012-9593

How to cite

top

Besser, Amnon, and de Jeu, Rob. "The syntomic regulator for the K-theory of fields." Annales scientifiques de l'École Normale Supérieure 36.6 (2003): 867-924. <http://eudml.org/doc/82621>.

@article{Besser2003,
author = {Besser, Amnon, de Jeu, Rob},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {867-924},
publisher = {Elsevier},
title = {The syntomic regulator for the K-theory of fields},
url = {http://eudml.org/doc/82621},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Besser, Amnon
AU - de Jeu, Rob
TI - The syntomic regulator for the K-theory of fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 6
SP - 867
EP - 924
LA - eng
UR - http://eudml.org/doc/82621
ER -

References

top
  1. [1] Berthelot P., Finitude et pureté cohomologique en cohomologie rigide, Invent. Math.128 (2) (1997) 329-377, with an appendix in English by A.J. de Jong. Zbl0908.14005MR1440308
  2. [2] Besser A., Syntomic regulators and p-adic integration I: rigid syntomic regulators, Israel J. Math.120 (2000) 291-334. Zbl1001.19003MR1809626
  3. [3] Besser A., Syntomic regulators and p-adic integration II: K2 of curves, Israel J. Math.120 (2000) 335-360. Zbl1001.19004MR1809627
  4. [4] Besser A., Coleman integration using the Tannakian formalism, Math. Ann.322 (1) (2002) 19-48. Zbl1013.11028MR1883387
  5. [5] Besser A., Finite and p-adic polylogarithms, Compositio Math.130 (2) (2002) 215-223. Zbl1062.11041MR1883819
  6. [6] Brown K.S., Gersten S.M., Algebraic K-theory as generalized sheaf cohomology, in: Algebraic K-Theory, I: Higher K-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972 , Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 266-292. Zbl0291.18017MR347943
  7. [7] Burgos Gil J.I., The Regulators of Beilinson and Borel, CRM Monogr. Ser., vol. 15, Amer. Math. Soc, Providence, RI, 2002. Zbl0994.19003MR1869655
  8. [8] Borel A., Cohomologie de SLn et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)4 (4) (1977) 613-636, Errata at vol. 7, p. 373 (1980). Zbl0382.57027MR506168
  9. [9] Coleman R., de Shalit E., p-adic regulators on curves and special values of p-adic L-functions, Invent. Math.93 (2) (1988) 239-266. Zbl0655.14010MR948100
  10. [10] Chiarellotto B., Weights in rigid cohomology applications to unipotent F-isocrystals, Ann. Sci. École Norm. Sup. (4)31 (5) (1998) 683-715. Zbl0933.14008MR1643966
  11. [11] Coleman R., Dilogarithms, regulators, and p-adic L-functions, Invent. Math.69 (1982) 171-208. Zbl0516.12017MR674400
  12. [12] de Jeu R., Zagier's conjecture and wedge complexes in algebraic K-theory, Compositio Math.96 (2) (1995) 197-247. Zbl0868.19002MR1326712
  13. [13] de Jeu R., On K(3)4 of curves over number fields, Invent. Math.125 (3) (1996) 523-556. Zbl0864.11059MR1400316
  14. [14] de Jeu R., Towards regulator formulae for the K-theory of curves over number fields, Compositio Math.124 (2) (2000) 137-194. Zbl0985.19002MR1804201
  15. [15] Elbaz-Vincent P., Gangl H., On poly(ana)logs. I, Compositio Math.130 (2) (2002) 161-210. Zbl1062.11042MR1883818
  16. [16] Gillet H., Riemann–Roch theorems for higher algebraic K-theory, Adv. Math.40 (1981) 203-288. Zbl0478.14010MR624666
  17. [17] Gillet H., Soulé C., Filtrations on higher algebraic K-theory, in: Algebraic K-Theory, Seattle, WA, 1997, Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc, Providence, RI, 1999, pp. 89-148. Zbl0951.19003MR1743238
  18. [18] Gros M., Régulateurs syntomiques et valeurs de fonctions Lp-adiques. II, Invent. Math.115 (1) (1994) 61-79. Zbl0799.14010MR1248079
  19. [19] Harder G., Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern, Invent. Math.42 (1977) 135-175. Zbl0391.20036MR473102
  20. [20] Huber A., Wildeshaus J., Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math.3 (1998) 27-133, electronic. Zbl0906.19004MR1643974
  21. [21] Kontsevich M., The 11/2-logarithm, Compositio Math.130 (2) (2002) 211-214, Appendix to [15]. MR1884238
  22. [22] Milne J.S., Étale Cohomology, Princeton Univ. Press, Princeton, NJ, 1980. Zbl0433.14012MR559531
  23. [23] Quillen D., Higher algebraic K-theory. I, in: Algebraic K-Theory, I: Higher K-Theories, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147. Zbl0292.18004MR338129
  24. [24] Schneider P., Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-Functions, Academic Press, Boston, MA, 1988, pp. 1-35. Zbl0673.14007MR944989
  25. [25] Théorie des topos et cohomologie étale des schémas, Tome 1: Théorie des topos, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier, avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat , Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972. Zbl0256.18008MR354652
  26. [26] Somekawa M., Log-syntomic regulators and p-adic polylogarithms, 17 (3) (1999) 265-294. Zbl0978.19004MR1703301
  27. [27] Wojtkowiak Z., A note on functional equations of the p-adic polylogarithms, Bull. Soc. Math. France119 (3) (1991) 343-370. Zbl0748.12006MR1125671
  28. [28] Zagier D., Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in: Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391-430. Zbl0728.11062MR1085270

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.