The syntomic regulator for the K-theory of fields
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 6, page 867-924
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBesser, Amnon, and de Jeu, Rob. "The syntomic regulator for the K-theory of fields." Annales scientifiques de l'École Normale Supérieure 36.6 (2003): 867-924. <http://eudml.org/doc/82621>.
@article{Besser2003,
author = {Besser, Amnon, de Jeu, Rob},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {867-924},
publisher = {Elsevier},
title = {The syntomic regulator for the K-theory of fields},
url = {http://eudml.org/doc/82621},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Besser, Amnon
AU - de Jeu, Rob
TI - The syntomic regulator for the K-theory of fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 6
SP - 867
EP - 924
LA - eng
UR - http://eudml.org/doc/82621
ER -
References
top- [1] Berthelot P., Finitude et pureté cohomologique en cohomologie rigide, Invent. Math.128 (2) (1997) 329-377, with an appendix in English by A.J. de Jong. Zbl0908.14005MR1440308
- [2] Besser A., Syntomic regulators and p-adic integration I: rigid syntomic regulators, Israel J. Math.120 (2000) 291-334. Zbl1001.19003MR1809626
- [3] Besser A., Syntomic regulators and p-adic integration II: K2 of curves, Israel J. Math.120 (2000) 335-360. Zbl1001.19004MR1809627
- [4] Besser A., Coleman integration using the Tannakian formalism, Math. Ann.322 (1) (2002) 19-48. Zbl1013.11028MR1883387
- [5] Besser A., Finite and p-adic polylogarithms, Compositio Math.130 (2) (2002) 215-223. Zbl1062.11041MR1883819
- [6] Brown K.S., Gersten S.M., Algebraic K-theory as generalized sheaf cohomology, in: Algebraic K-Theory, I: Higher K-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972 , Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 266-292. Zbl0291.18017MR347943
- [7] Burgos Gil J.I., The Regulators of Beilinson and Borel, CRM Monogr. Ser., vol. 15, Amer. Math. Soc, Providence, RI, 2002. Zbl0994.19003MR1869655
- [8] Borel A., Cohomologie de SLn et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)4 (4) (1977) 613-636, Errata at vol. 7, p. 373 (1980). Zbl0382.57027MR506168
- [9] Coleman R., de Shalit E., p-adic regulators on curves and special values of p-adic L-functions, Invent. Math.93 (2) (1988) 239-266. Zbl0655.14010MR948100
- [10] Chiarellotto B., Weights in rigid cohomology applications to unipotent F-isocrystals, Ann. Sci. École Norm. Sup. (4)31 (5) (1998) 683-715. Zbl0933.14008MR1643966
- [11] Coleman R., Dilogarithms, regulators, and p-adic L-functions, Invent. Math.69 (1982) 171-208. Zbl0516.12017MR674400
- [12] de Jeu R., Zagier's conjecture and wedge complexes in algebraic K-theory, Compositio Math.96 (2) (1995) 197-247. Zbl0868.19002MR1326712
- [13] de Jeu R., On K(3)4 of curves over number fields, Invent. Math.125 (3) (1996) 523-556. Zbl0864.11059MR1400316
- [14] de Jeu R., Towards regulator formulae for the K-theory of curves over number fields, Compositio Math.124 (2) (2000) 137-194. Zbl0985.19002MR1804201
- [15] Elbaz-Vincent P., Gangl H., On poly(ana)logs. I, Compositio Math.130 (2) (2002) 161-210. Zbl1062.11042MR1883818
- [16] Gillet H., Riemann–Roch theorems for higher algebraic K-theory, Adv. Math.40 (1981) 203-288. Zbl0478.14010MR624666
- [17] Gillet H., Soulé C., Filtrations on higher algebraic K-theory, in: Algebraic K-Theory, Seattle, WA, 1997, Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc, Providence, RI, 1999, pp. 89-148. Zbl0951.19003MR1743238
- [18] Gros M., Régulateurs syntomiques et valeurs de fonctions Lp-adiques. II, Invent. Math.115 (1) (1994) 61-79. Zbl0799.14010MR1248079
- [19] Harder G., Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern, Invent. Math.42 (1977) 135-175. Zbl0391.20036MR473102
- [20] Huber A., Wildeshaus J., Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math.3 (1998) 27-133, electronic. Zbl0906.19004MR1643974
- [21] Kontsevich M., The 11/2-logarithm, Compositio Math.130 (2) (2002) 211-214, Appendix to [15]. MR1884238
- [22] Milne J.S., Étale Cohomology, Princeton Univ. Press, Princeton, NJ, 1980. Zbl0433.14012MR559531
- [23] Quillen D., Higher algebraic K-theory. I, in: Algebraic K-Theory, I: Higher K-Theories, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147. Zbl0292.18004MR338129
- [24] Schneider P., Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-Functions, Academic Press, Boston, MA, 1988, pp. 1-35. Zbl0673.14007MR944989
- [25] Théorie des topos et cohomologie étale des schémas, Tome 1: Théorie des topos, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier, avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat , Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972. Zbl0256.18008MR354652
- [26] Somekawa M., Log-syntomic regulators and p-adic polylogarithms, 17 (3) (1999) 265-294. Zbl0978.19004MR1703301
- [27] Wojtkowiak Z., A note on functional equations of the p-adic polylogarithms, Bull. Soc. Math. France119 (3) (1991) 343-370. Zbl0748.12006MR1125671
- [28] Zagier D., Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in: Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391-430. Zbl0728.11062MR1085270
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.