Jacobiennes généralisées, monodromie unipotente et intégrales itérées

Pierre Cartier

Séminaire Bourbaki (1987-1988)

  • Volume: 30, page 31-52
  • ISSN: 0303-1179

How to cite

top

Cartier, Pierre. "Jacobiennes généralisées, monodromie unipotente et intégrales itérées." Séminaire Bourbaki 30 (1987-1988): 31-52. <http://eudml.org/doc/110100>.

@article{Cartier1987-1988,
author = {Cartier, Pierre},
journal = {Séminaire Bourbaki},
keywords = {Albanese varieties},
language = {fre},
pages = {31-52},
publisher = {Société Mathématique de France},
title = {Jacobiennes généralisées, monodromie unipotente et intégrales itérées},
url = {http://eudml.org/doc/110100},
volume = {30},
year = {1987-1988},
}

TY - JOUR
AU - Cartier, Pierre
TI - Jacobiennes généralisées, monodromie unipotente et intégrales itérées
JO - Séminaire Bourbaki
PY - 1987-1988
PB - Société Mathématique de France
VL - 30
SP - 31
EP - 52
LA - fre
KW - Albanese varieties
UR - http://eudml.org/doc/110100
ER -

References

top
  1. [1] J. Birman - Braids, links and mapping class groups, Ann. Math. Studies, vol. 82 (1974), Princeton Univ. Press. Zbl0305.57013MR375281
  2. [2] N. Bourbaki - Groupes et algèbres de Lie, chap. 2-3, Hermann, Paris, 1972. Zbl0483.22001MR573068
  3. [3] N. Bourbaki - Groupes et algèbres de Lie, chap. 4-6, Masson, Paris, 1981. Zbl0483.22001MR647314
  4. [4] E. Cattani et al. (éditeurs) - Hodge theory, Proc. Conf. Sant. Cugat, Lect. Notes in Math. vol. 1246, Springer, Berlin, 1987. Zbl0604.00004MR894037
  5. [5] P.A. Griffiths, J.W. Morgan - Rational homotopy theory and differential forms, Birkhäuser, Boston, 1981. Zbl0474.55001MR641551
  6. [6] J.A. Lappo-Danilevsky - Théorie des systèmes des équations différentielles linéaires, Chelsea, New York, 1953. Zbl0051.32301
  7. [7] W. Magnus, A. Karass et D. Solitar - Combinatorial group theory, Dover, New York, 1976. Zbl0362.20023MR422434
  8. [1] E. Brieskorn - Sur les groupes de tresses (d'après V.I. Arnold), n° 401, 1971/2. Zbl0277.55003
  9. [2] P. Cartier - Arrangements d'hyperplans ; un chapitre de géométrie combinatoire, n° 561, 1980/1. Zbl0483.51011
  10. [3] P. Cartier - Décomposition des polyèdres, le point sur le 3e problème de Hilbert, n° 646, 1984/5. Zbl0589.51032
  11. [4] A. Connes - Index des sous-facteurs, algèbres de Hecke et théorie des noeuds (d'après Vaughan Jones), n° 647, 1984/5. Zbl0597.57005
  12. [5] J.-L. Verdier - Groupes quantiques (d'après Drinfel'd), n° 685, 1986/7. Zbl0645.16006
  13. [1] K.T. Chen - Iterated integrals of differential forms and loop space homology, Ann. of Maths, 97 (1973), p. 217-246. Zbl0227.58003MR380859
  14. [2] K.T. Chen - Iterated path integrals, Bull. Amer. Math. Soc.83 (1977), p. 831-879. Zbl0389.58001MR454968
  15. [3] A.N. Paršin - A generalization of Jacobian variety, Amer. Math. Soc. Transl. (2) 84 (1969), p. 187-196. Zbl0189.21501
  16. [4] R. Ree - Lie elements and an algebra associated with shuffles, Ann. of Maths, 68 (1958), p. 210-220. Zbl0083.25401MR100011
  17. [1] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan - Real homotopy theory of Kähler manifolds, Invent. Math.29 (1975), p. 245-274. Zbl0312.55011MR382702
  18. [2] J. Morgan - The algebraic topology on smooth algebraic varieties, Publ. Math. I.H.E.S., 48 (1978), p. 157-204. Zbl0401.14003MR516917
  19. [3] D. Quillen - Rational homotopy theory, Ann. of Maths, 90 (1969), p. 205-295. Zbl0191.53702MR258031
  20. [4] D. Sullivan - Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1977), p. 269-331. Zbl0374.57002MR646078
  21. [1] P. Deligne - Équations différentielles à points singuliers réguliers, Lect. Notes in Math. vol. 163, Springer, Berlin, 1970. Zbl0244.14004MR417174
  22. [2] P. Deligne - Théorie de Hodge I : Congrès Int. Math.Nice1970, vol. 1, p. 425-430 ; II : Publ. Math. I.H.E.S.40 (1971), p. 5-58 ; III : ibid., 44 (1974) , p. 5-77. Zbl0219.14006MR441965
  23. [3] P. Deligne - Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. I.H.E.S., 35 (1968), p. 107-126. Zbl0159.22501MR244265
  24. [4] A. Grothendieck - On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.E.S., 29 (1966), p. 351-359. Zbl0145.17602MR199194
  25. [5] P. Griffiths, W. Schmidt - Recent developments in Hodge theory : a discussion of techniques and results, p. 31-127, in Discrete subgroups of Lie groups and applications to moduli (Bombay Colloquium 1973), Oxford Univ. Press, 1975. Zbl0355.14003MR419850
  26. [1] A.A. Beilinson - Notes on absolute Hodge cohomology, Contemporary Maths, vol. 55, p. 35-68, Amer. Math. Soc., 1986. Zbl0621.14011MR862628
  27. [2] R. Hain - The de Rham homotopy theory of complex algebraic varieties I, II, à paraître. Zbl0637.55006
  28. [3] R. Hain - The geometry of the mixed Hodge structure on the fundamental group, Algebraic geometry, Bowdoin College1985, à paraître dans Proc. Symp. Pure Math. Zbl0654.14006MR927984
  29. [4] R. Hain - On a generalization of Hilbert's 21st problem, Ann. Scient. E.N.S.19 (1986), p. 609-627. Zbl0616.14004MR875090
  30. [5] R. Hain, S. Zucker - Unipotent variations of mixed Hodge structure, Invent. Math.88 (1987), p. 83-124. Zbl0622.14007MR877008
  31. [6] V. Navarro-Aznar - Sur la théorie de Hodge - Deligne I : Invent. Math.90 (1987), p. 11-76 ; Zbl0639.14002MR906579
  32. II : à paraître. 
  33. [1] K. Aomoto - Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Tokyo, 25 (1978), p. 149-156. Zbl0416.32020MR509582
  34. [2] M. Falk et R. Randell - The lower central series of a fiber-type arrangement, Invent. Math.82 (1985), p. 77-88. Zbl0574.55010MR808110
  35. [3] V. Jones - Index of subfactors, Invent. Math.72 (1983), p. 1-25. Zbl0508.46040MR696688
  36. [4] T. Kohno - Série de Poincaré - Koszul associée aux groupes de tresses pures, Invent. Math.82 (1985) p. 57-75. Zbl0574.55009MR808109
  37. [5] T. Kohno - Poincaré series of the Malcev completion of generalized pure braid groups, à paraître. 
  38. [6] T. Kohno - On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math. J.92 (1983), p. 21-37. Zbl0503.57001MR726138
  39. [7] T. Kohno - Monodromy representations of braid groups and Yang - Baxter equations, Annales Inst. Fourier, 37 (fascicule 4) (1987), p. 139-160, Colloque en l'honneur de J.-L. Koszul. Zbl0634.58040MR927394
  40. [8] T. Kohno et T. Oda - The lower central series of the pure braid group of an algebraic curve, à paraître. Zbl0642.20035
  41. [1] J.-L. Dupont - On polygarithms, Aarhus, prépublication, 1987. 
  42. [2] Y. Ihara - Profinite braid groups, Galois representations and complex multiplications, Ann. of Maths, 123 (1986), p. 43-106. Zbl0595.12003MR825839

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.