Sur les séries L associées aux formes modulaires

Ha Huy Khoai

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 1, page 1-13
  • ISSN: 0037-9484

How to cite

top

Khoai, Ha Huy. "Sur les séries $L$ associées aux formes modulaires." Bulletin de la Société Mathématique de France 120.1 (1992): 1-13. <http://eudml.org/doc/87637>.

@article{Khoai1992,
author = {Khoai, Ha Huy},
journal = {Bulletin de la Société Mathématique de France},
keywords = {determination of modular forms; -series; Manin's explicit formula; eigenvalues of Hecke operators},
language = {fre},
number = {1},
pages = {1-13},
publisher = {Société mathématique de France},
title = {Sur les séries $L$ associées aux formes modulaires},
url = {http://eudml.org/doc/87637},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Khoai, Ha Huy
TI - Sur les séries $L$ associées aux formes modulaires
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 1
SP - 1
EP - 13
LA - fre
KW - determination of modular forms; -series; Manin's explicit formula; eigenvalues of Hecke operators
UR - http://eudml.org/doc/87637
ER -

References

top
  1. [1] JACQUET (H.) and LANGLANDS (R.). — Automorphic forms on GL(2), Lecture Notes in Mathematics 114, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0236.12010MR53 #5481
  2. [2] LI (W.-C.) Winnie. — Newforms and functional equations, Math. Ann., t. 212, 1975, p. 285-315. Zbl0278.10026MR51 #5498
  3. [3] LI WINNIE (W.-C.). — Une caractérisation des représentations automorphes de GL(2) et de GL(1), C. R. Acad. Sci. Paris, t. A, 290, 1980, p. 681-684. Zbl0437.12011MR83h:22034b
  4. [4] LI WINNIE (W.-C.). — Hecke-Weil-Jacquet-Langlands Theorem revisited, Lecture Notes in Mathematics 751, Springer-Verlag, Berlin-Heidelberg-New York, p. 206-220. Zbl0413.10023MR81m:10058
  5. [5] LI WINNIE (W.-C.). — On converse theorems for GL(2) and GL(1), Amer. J. Math., t. 103, 1981, p. 851-886. Zbl0477.12013MR83b:22024
  6. [6] MANIN (Y.I.). — Explicite formulas for the eigenvalues of Hecke operators, Acta Arith., t. 24, 1973, p. 239-249. Zbl0273.10018MR48 #3886
  7. [7] MANIN (Y.I.). — Cusps and the zeta function of modular curves, Izv. AN SSSR, t. 3, 36, 1972, p. 19-66. Zbl0243.14008
  8. [8] OGG (A.). — Modular forms and Dirichlet series. — Benjamin, New York, 1968. Zbl0191.38101
  9. [9] PIATECKII SHAPIRO (I.I.). — On the Weil-Jacquet-Langlands theorem. Lie groups and their Representations, Halsted, New York, 1975, p. 583-595. Zbl0329.22014
  10. [10] RAZAR (M.). — Modular forms for Γ0(N) and Dirichlet series, Trans. Amer. Math. Soc., t. 231, 2, 1977, p. 489-495. Zbl0364.10015MR56 #2926
  11. [11] WEIL (A.). — Uber der Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., t. 168, 1967, p. 149-156. Zbl0158.08601MR34 #7473
  12. [12] WEIL (A.). — Dirichlet Series and Automorphic Forms, Lecture Notes in Mathematics 189, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0218.10046
  13. [13] WEIL (A.). — On the analogue of the modular group in characteristic p. Functional Analysis and Related Fields, p. 211-223, Springer-Verlag, Berlin and New York, 1970. Zbl0226.10031MR42 #5913
  14. [14] WEIL (A.). — Zeta-functions and Mellin transforms, Colloque on Algebraic Geometry, Bombay, p. 409-426, Tata Institute Bombay, 1969. Zbl0193.49104MR41 #6857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.