Sequence entropy pairs and complexity pairs for a measure
Wen Huang[1]; Alejandro Maass; Xiangdong Ye
- [1] University of Science and Technology of China, Department of Mathematics, Hefei, Anhui, 230026 P.R. (Chine), Universidad de Chile, Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Casilla 170/3 correo 3, Santiago (Chili), University of Science and Technology of China, Department of Mathematics, Hefei, Anhui, 230026 P.R. (Chine)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 4, page 1005-1028
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHuang, Wen, Maass, Alejandro, and Ye, Xiangdong. "Sequence entropy pairs and complexity pairs for a measure." Annales de l’institut Fourier 54.4 (2004): 1005-1028. <http://eudml.org/doc/116128>.
@article{Huang2004,
abstract = {In this paper we explore topological factors in between the Kronecker factor and the
maximal equicontinuous factor of a system. For this purpose we introduce the concept of
sequence entropy $n$-tuple for a measure and we show that the set of sequence entropy
tuples for a measure is contained in the set of topological sequence entropy tuples [H-
Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we
introduce a weak notion and a strong notion of complexity pair for a measure. We prove
that in general the strongest notion is strictly contained in between sequence entropy
pairs and topological complexity pairs.},
affiliation = {University of Science and Technology of China, Department of Mathematics, Hefei, Anhui, 230026 P.R. (Chine), Universidad de Chile, Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Casilla 170/3 correo 3, Santiago (Chili), University of Science and Technology of China, Department of Mathematics, Hefei, Anhui, 230026 P.R. (Chine)},
author = {Huang, Wen, Maass, Alejandro, Ye, Xiangdong},
journal = {Annales de l’institut Fourier},
keywords = {sequential entropy; complexity},
language = {eng},
number = {4},
pages = {1005-1028},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sequence entropy pairs and complexity pairs for a measure},
url = {http://eudml.org/doc/116128},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Huang, Wen
AU - Maass, Alejandro
AU - Ye, Xiangdong
TI - Sequence entropy pairs and complexity pairs for a measure
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 1005
EP - 1028
AB - In this paper we explore topological factors in between the Kronecker factor and the
maximal equicontinuous factor of a system. For this purpose we introduce the concept of
sequence entropy $n$-tuple for a measure and we show that the set of sequence entropy
tuples for a measure is contained in the set of topological sequence entropy tuples [H-
Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we
introduce a weak notion and a strong notion of complexity pair for a measure. We prove
that in general the strongest notion is strictly contained in between sequence entropy
pairs and topological complexity pairs.
LA - eng
KW - sequential entropy; complexity
UR - http://eudml.org/doc/116128
ER -
References
top- V. Bergelson, Ergodic Ramsey theory -- an update, Ergodic theory of actions (Warwick, 1993-1994) 228 (1996), 1-61, Cambridge Univ. Press, Cambridge Zbl0846.05095
- F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic dynamics and its applications, AMS Contemporary Mathematics 135 (1992), 95-105 Zbl0783.54033MR1185082
- F. Blanchard, A disjointness theorem involving topological entropy, Bull. de la Soc. Math. de France 121 (1993), 465-478 Zbl0814.54027MR1254749
- F. Blanchard, E. Glasner, B. Host, Variations on the variational principle, Ergod. Th. and Dynam. Sys 17 (1997), 29-53 Zbl0868.54033MR1440766
- F. Blanchard, E. Glasner, S. Kolyada, A. Maass, On Li-Yorke pairs, Journal für die reine und angewandte Mathematik 547 (2002), 51-68 Zbl1059.37006MR1900136
- F. Blanchard, B. Host, A. Maass, Topological complexity, Ergod. Th. and Dynam. Sys 20 (2000), 641-662 Zbl0962.37003MR1764920
- F. Blanchard, Y. Lacroix, Zero-entropy factors of topological flows, Proc. Amer. Math. Soc 119 (1993), 85-992 Zbl0787.54040MR1155593
- F. Blanchard, B. Host, A. Maass, S. Martínez, D. Rudolph, Entropy pairs for a measure, Ergod. Th. and Dynam. Sys 15 (1995), 621-632 Zbl0833.58022MR1346392
- M. Denker, C. Grillenberger, C. Sigmund, Ergodic theory on compact spaces, 527, Springer-Verlag, New York Zbl0328.28008
- S. Ferenczi, Measure-theoretic complexity of ergodic systems, Israel J. Math 100 (1997), 189-207 Zbl1095.28510MR1469110
- H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Math. System Th. 1 (1967), 1-55 Zbl0146.28502MR213508
- E. Glasner, A simple characterization of the set of -entropy pairs and applications, Israel J. Math 102 (1997), 13-27 Zbl0909.54035MR1489099
- E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs 101 (2003) Zbl1038.37002MR1958753
- T.N.T Goodman, Topological sequence entropy, Proc. London Math. Soc 29 (1974), 331-350 Zbl0293.54043MR356009
- E. Glasner, B. Weiss, Strictly ergodic, uniform positive entropy models, Bull. Soc. Math. France 122 (1994), 399-412 Zbl0833.54022MR1294463
- P. Hulse, Sequence entropy and subsequence generators, J. London Math. Soc 26 (1982), 441-450 Zbl0498.28022MR684558
- W. Huang, S. Li, S. Shao, X. Ye, Null systems and sequence entropy pairs, Ergod. Th. and Dynam. Sys 23-5 (2003), 1505-1523 Zbl1134.37308MR2018610
- W. Huang, X. Ye, Topological K-systems, a thrid approach, (2001)
- L. Kronecker, Naherrungsweise ganzzahlige Auflosunglinear Gleichungen, 1179-93, 1271-99, 47-109, S.-B. Preuss
- A. G. Kushnirenko, On metric invariants of entropy type, Russian Math. Surveys 22 (1967), 53-61 Zbl0169.46101MR217257
- W. Parry, Topics in Ergodic Theory, (1981), Cambridge-New York Zbl0449.28016MR614142
- A. Saleski, Sequence entropy and mixing, J. of Math. Anal. and Appli. 60 (1977), 58-66 Zbl0368.28016MR450518
- P. Walters, An introduction to ergodic theory, 79 (1982), Springer-Verlag, New York-Berlin Zbl0475.28009MR648108
- B. Weiss, Multiple recurrence and doubly minimal systems, AMS Contemporary Mathematics 215 (1998), 189-196 Zbl0896.28005MR1603185
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.