L -functions for symplectic groups

David Ginzburg; Stephen Rallis; David Soudry

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 2, page 181-244
  • ISSN: 0037-9484

How to cite

top

Ginzburg, David, Rallis, Stephen, and Soudry, David. "$L$-functions for symplectic groups." Bulletin de la Société Mathématique de France 126.2 (1998): 181-244. <http://eudml.org/doc/87783>.

@article{Ginzburg1998,
author = {Ginzburg, David, Rallis, Stephen, Soudry, David},
journal = {Bulletin de la Société Mathématique de France},
keywords = {-function; theta series; Eisenstein series; Whittaker model; automorphic cuspidal representation},
language = {eng},
number = {2},
pages = {181-244},
publisher = {Société mathématique de France},
title = {$L$-functions for symplectic groups},
url = {http://eudml.org/doc/87783},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Ginzburg, David
AU - Rallis, Stephen
AU - Soudry, David
TI - $L$-functions for symplectic groups
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 2
SP - 181
EP - 244
LA - eng
KW - -function; theta series; Eisenstein series; Whittaker model; automorphic cuspidal representation
UR - http://eudml.org/doc/87783
ER -

References

top
  1. [BFG] BUMP (D.), FRIEDBERG (S.), GINZBURG (D.). — Whittaker-Orthogonal models, functoriality, and the Rankin-Selberg method, Invent Math., t. 109, 1992, p. 55-96. Zbl0782.11015MR93e:11066
  2. [BFH] BUMP (D.), FRIEDBERG (S.), HOFFSTEIN (J.). — p-Adic Whittaker functions on the metaplectic group, Duke Math. J., t. 63, n° 2, 1991, p. 379-397. Zbl0758.22009MR92d:22024
  3. [C-S] CASSELMAN (W.), SHALIKA (J.). — The unramified principal series of p-adic groups II : the Whittaker function, Compos. Math., t. 41, 1980, p. 207-231. Zbl0472.22005MR83i:22027
  4. [DM] DIXMIER (J.), MALLIAVIN (P.). — Factorizations des fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. II, t. 102, 1978, p. 307-330. Zbl0392.43013MR80f:22005
  5. [GPS] GELBART (S.), PIATETSKI-SHAPIRO (I.). — L-functions for G × GL(n), Springer Lecture Notes in Math., t. 1254, 1985. 
  6. [GS] GELBART (S.), SHAHIDI (F.). — Analytic Properties of Automorphic L-Functions, Perspectives in Mathematics, t. 6, 1998. Zbl0654.10028MR89f:11077
  7. [G] GINZBURG (D.). — L-functions for SOn × GLk, J. reine angew. Math., t. 405, 1990, p. 156-180. Zbl0684.22009MR91g:11048
  8. [GRS1] GINZBURG (D.), RALLIS (S.), SOUDRY (D.). — Periods, poles of L-functions and symplectic-orthogonal theta lifts, J. reine angew. math., t. 487, 1997, p. 85-114. Zbl0928.11025MR98f:11046
  9. [GRS2] GINZBURG (D.), RALLIS (S.), SOUDRY (D.). — A new construction of the inverse Shimura correspondance, IMRN, t. 7, 1997, p. 349-357. Zbl0881.11048MR98a:11056
  10. [GRS3] GINZBURG (D.), RALLIS (S.), SOUDRY (D.). — Self Dual GLn Automorphic modules, construction of a backward lifting from GLn to classical group, IMRN, t. 14, 1997, p. 687-701. Zbl0887.11022MR98e:22013
  11. [JPSS] JACQUET (H.), PIATETSKI-SHAPIRO (I.), SHALIKA (J.). — Rankin-Selberg convolutions, Amer. J. Math. 105, 1983, p. 367-464. Zbl0525.22018MR85g:11044
  12. [JS] JACQUET (H.), SHALIKA (J.). — Exterior square L-functions, in Automorphic forms, Shimura varieties and L-functions, L. Clozel and J. Milne eds, vol. II, 1988. Zbl0695.10025
  13. [P] PERRIN (P.). — Representations de Schrödinger, Indice de Maslov et groupe metaplectique, in Non Commutative Harmonic Analysis and Lie Groups, Proc. Marseille-Luming 1980, Springer Lecture Notes, t. 880, 1981, p. 370-407. Zbl0462.22008MR83m:22027
  14. [P.S.] PIATETSKI-SHAPIRO (I.). — Euler Subgroups, in Lie groups and their Representations, Halsted, New York, 1975. Zbl0329.20028MR53 #10720
  15. [S1] SOUDRY (D.). — Rankin-Selberg Convolutions for SO2l+1 × GLn : Local Theory, Memoirs of AMS, t. 500, 1993, p. 1-100. Zbl0805.22007MR94b:11043
  16. [S2] SOUDRY (D.). — On the Archimedean theory of Rankin-Selberg convolutions for SO2l+1 × GLn, Ann. Scient. Éc. Norm. Sup., t. 28, 1995, p. 161-224. Zbl0824.11034MR96m:11043
  17. [T1] TON-THAT (T.). — On holomorphic representations of symplectic groups, Bull. Amer. Math. Soc., t. 81, 1975, p. 1069-1072. Zbl0312.22015MR53 #5810
  18. [T2] TON-THAT (T.). — Lie groups representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc., t. 126, 1976, p. 1-46. Zbl0287.22014MR53 #3210

NotesEmbed ?

top

You must be logged in to post comments.