On the archimedean theory of Rankin-Selberg convolutions for SO 2 l + 1 × GL n

David Soudry

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 2, page 161-224
  • ISSN: 0012-9593

How to cite

top

Soudry, David. "On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$." Annales scientifiques de l'École Normale Supérieure 28.2 (1995): 161-224. <http://eudml.org/doc/82381>.

@article{Soudry1995,
author = {Soudry, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {admissible representations; Whittaker model; meromorphic continuation; Rankin-Selberg convolutions},
language = {eng},
number = {2},
pages = {161-224},
publisher = {Elsevier},
title = {On the archimedean theory of Rankin-Selberg convolutions for $\{\rm SO\}_\{2l+1\}\times \{\rm GL\}_n$},
url = {http://eudml.org/doc/82381},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Soudry, David
TI - On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 2
SP - 161
EP - 224
LA - eng
KW - admissible representations; Whittaker model; meromorphic continuation; Rankin-Selberg convolutions
UR - http://eudml.org/doc/82381
ER -

References

top
  1. [C] W. CASSELMAN, Canonical extensions of Harish-Chandra modules (Can. J. Math., Vol. 41, 1989, pp. 315-438). Zbl0702.22016MR90j:22013
  2. [DM] J. DIXMIER and P. MALLIAVIN, Factorisations des fonctions et de vecteurs indéfiniment différentiables (Bull. Sci. Math. II, Sér. 102, 1978, pp. 307-330). Zbl0392.43013MR80f:22005
  3. [GS] S. GELBART and F. SHAHIDI, Analytic properties of automorphic L-functions (Perspectives in Math., Vol. 6, Academic Press, 1988). Zbl0654.10028MR89f:11077
  4. [G] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires (Memoirs AMS, N° 16, 1955). Zbl0123.30301MR17,763c
  5. [J.S.] H. JACQUET and J. SHALIKA, Rankin-Selberg convolutions : archimedean theory (Israel Mathematical Conference Proc., Festschrift in honor of I. Piatetski-Shapiro, S. Gelbert, R. Howe, P. Sarnak, Ed., Part I, 1990, pp. 125-207). Zbl0712.22011MR93d:22022
  6. [Sh1] F. SHAHIDI, On certain L-functions (American J. Math., Vol. 103, 1981, pp. 297-355). Zbl0467.12013MR82i:10030
  7. [Sh2] F. SHAHIDI, Local coefficients as Artin factors for real groups (Duke Math. J., Vol. 52, 1985, pp. 973-1007). Zbl0674.10027MR87m:11049
  8. [S] D. SOUDRY, Rankin-Selberg convolutions for SO2ℓ+1 × GLn : local theory (Memoirs of AMS, No. 500, 1993, pp. 1-100). Zbl0805.22007
  9. [W1] N. WALLACH, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in Lie Group Representations I (Proceedings, University of Maryland 1982-1983, Springer Lecture Notes in Mathematics, Vol. 1024, pp. 287-369). Zbl0553.22005MR85g:22029
  10. [W2] N. WALLACH, Real reductive groups I, Academic Press, 1988. Zbl0666.22002MR89i:22029
  11. [W3] N. WALLACH, Real reductive groups II, Academic Press, 1992. Zbl0785.22001MR93m:22018
  12. [Wr] G. WARNER, Harmonic analysis on semi-simple Lie groups I (Grund. Math. Wiss., Vol. 188, Springer-Verlag, 1972). Zbl0265.22020MR58 #16979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.