Canonical homotopy operators for the ¯ complex in strictly pseudoconvex domains

Mats Andersson; Jörgen Boo; Joaquim Ortega-Cerdà

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 2, page 245-271
  • ISSN: 0037-9484

How to cite

top

Andersson, Mats, Boo, Jörgen, and Ortega-Cerdà, Joaquim. "Canonical homotopy operators for the $\overline{\partial }$ complex in strictly pseudoconvex domains." Bulletin de la Société Mathématique de France 126.2 (1998): 245-271. <http://eudml.org/doc/87784>.

@article{Andersson1998,
author = {Andersson, Mats, Boo, Jörgen, Ortega-Cerdà, Joaquim},
journal = {Bulletin de la Société Mathématique de France},
keywords = {canonical homotopy operators; complex; Bergman projection; integral formula; Bergman metric; strictly pseudoconvex domain},
language = {eng},
number = {2},
pages = {245-271},
publisher = {Société mathématique de France},
title = {Canonical homotopy operators for the $\overline\{\partial \}$ complex in strictly pseudoconvex domains},
url = {http://eudml.org/doc/87784},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Andersson, Mats
AU - Boo, Jörgen
AU - Ortega-Cerdà, Joaquim
TI - Canonical homotopy operators for the $\overline{\partial }$ complex in strictly pseudoconvex domains
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 2
SP - 245
EP - 271
LA - eng
KW - canonical homotopy operators; complex; Bergman projection; integral formula; Bergman metric; strictly pseudoconvex domain
UR - http://eudml.org/doc/87784
ER -

References

top
  1. [1] AMAR (E.). — Extension de fonctions holomorphes et courants, Bull. Sc. Math., 2e série, t. 107, 1983, p. 25-48. Zbl0543.32007MR85c:32025
  2. [2] ANDERSSON (M.). — Formulas for the L2 minimal solutions of the ∂∂-equation in the unit ball of ℂn, Math. Scand., t. 56, 1985, p. 43-69. Zbl0591.32004MR87d:32036
  3. [3] ANDERSSON (M.). — Values in the interior of the L2-minimal solutions of the ∂∂-equation in the unit ball of ℂn, Pub. Mat., t. 32, 1988, p. 179-189. Zbl0667.32014MR90c:32028
  4. [4] ANDERSSON (M.), BOO (J.). — Canonical homotopy operators for the ∂ complex in strictly pseudoconvex domains. — Preprint Göteborg, 1996. 
  5. [5] ANDERSSON (M.), BOO (J.). — Approximate formulas for canonical homotopy operators for ∂ in strictly pseudoconvex domains. — Preprint Göteborg, 1997. 
  6. [6] ANDERSSON (M.), ORTEGA-CERDÀ (J.). — Canonical homotopy operators for ∂ in the ball with respect to the Bergman metric. — Preprint Göteborg, 1995. 
  7. [7] BERNDTSSON (B.). — Integral formulas for the ∂∂ equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann., t. 249, 1980, p. 163-176. Zbl0414.31007MR81m:32012
  8. [8] BERNDTSSON (B.). — L2 Methods for the ∂ Equation. — KASS Univ. Press, Göteborg, 1995. 
  9. [9] BERNDTSSON (B.), ANDERSSON (M.). — Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, t. 32, 3, 1982, p. 91-110. Zbl0466.32001MR84j:32003
  10. [10] BRUNA (J.). — Nucleos de Cauchy en dominios estrictamente pseudoconvexos y operadores integrales que invierten la ecuación ∂. — Contribuciones matématicas en honor a Luis Vigil, Universidad de Zaragoza, 1984. 
  11. [11] CHARPENTIER (P.). — Formules explicites pour les solutions minimales de l'équation ∂u = f dans la boule et dans le polydisque de ℂn, Ann. Inst. Fourier, t. 30, 1980, p. 121-154. Zbl0425.32009MR82j:32009
  12. [12] DONELLY (H.), FEFFERMAN (C.). — L2 cohomology and index theorems for the Bergman metric, Ann. Math., t. 118, 1983. Zbl0532.58027
  13. [13] FOLLAND (G.B.), KOHN (J.J.). — The Neumann Problem for the Cauchy-Riemann Complex, Annals of Mathematics Studies, t. 75, 1972. Zbl0247.35093MR57 #1573
  14. [14] GRIFFITHS (P.), HARRIS (J.). — Principles of Algebraic Geometry. — Wiley Interscience, 1978. Zbl0408.14001MR80b:14001
  15. [15] GRADSHTEYN (I.S.), RYZHIK (I.M.). — Tables of integrals, series, and products. — Academic Press, 1980. Zbl0521.33001MR81g:33001
  16. [16] HARVEY (F.), POLKING (J.). — The ∂-Neumann solution to the inhomogeneous Cauchy-Riemann equation in the ball in ℂn, Trans. Amer. Math. Soc., t. 281, 1984, p. 587-613. Zbl0552.32018MR85e:32006
  17. [17] KERZMAN (N.), STEIN (E.). — The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., t. 45, 1978, p. 197-224. Zbl0387.32009MR58 #22676
  18. [18] LIGOCKA (E.). — The Hölder continuity of the Bergman projection and proper holomorphic mappings, Studia Math., t. 80, 1984, p. 89-107. Zbl0566.32017MR86e:32030
  19. [19] HENKIN (G.). — Solutions with estimates of the H. Levy and Poincaré-Lelong equations. Constructions of the functions of the Nevanlinna class with prescribed zeros in strictly pseudoconvex domains, Dokl. Akad. Nauk. SSR, t. 224, 1975, p. 3-13. Zbl0333.35056MR57 #6511
  20. [20] RUDIN (W.). — Function Theory in the Unit Ball of ℂn. — Springer-Verlag, 1980. Zbl0495.32001MR82i:32002
  21. [21] SKODA (H.). — Valeurs au bord pour les solutions de l'opérateur d" et caractérisation de zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, t. 104, 1976, p. 225-299. Zbl0351.31007MR56 #8913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.