Tempered subgroups and representations with minimal decay of matrix coefficients

Hee Oh

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 3, page 355-380
  • ISSN: 0037-9484

How to cite

top

Oh, Hee. "Tempered subgroups and representations with minimal decay of matrix coefficients." Bulletin de la Société Mathématique de France 126.3 (1998): 355-380. <http://eudml.org/doc/87787>.

@article{Oh1998,
author = {Oh, Hee},
journal = {Bulletin de la Société Mathématique de France},
keywords = {unitary representation; tempered subgroup; compact quotient; matrix coefficient; simple real Lie group},
language = {eng},
number = {3},
pages = {355-380},
publisher = {Société mathématique de France},
title = {Tempered subgroups and representations with minimal decay of matrix coefficients},
url = {http://eudml.org/doc/87787},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Oh, Hee
TI - Tempered subgroups and representations with minimal decay of matrix coefficients
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 3
SP - 355
EP - 380
LA - eng
KW - unitary representation; tempered subgroup; compact quotient; matrix coefficient; simple real Lie group
UR - http://eudml.org/doc/87787
ER -

References

top
  1. [1] BOREL (A.), TITS (J.). — Groupes réductifs, Publ. Math. IHES, 27, 1965, p. 55-151. Zbl0145.17402MR34 #7527
  2. [2] BOURBAKI (N.). — Groupes et Algèbres de Lie, Chap. IV-VI. — Hermann, Paris, 1968. Zbl0483.22001
  3. [3] HOWE (R.E.). — On a notion of rank for unitary representations of the classical groups, Harmonic analysis and group representations II Circlo, Palazzone della Scuola normale superiore, CIME, 1980, p. 223-331. MR86j:22016
  4. [4] HOWE (R.E.), TAN (E.C.). — Non-Abelian Harmonic Analysis. — Springer-Verlag, 1992. Zbl0768.43001MR93f:22009
  5. [5] KNAPP (A.W.). — Representation theory of Semisimple groups - An overview based on examples. — Princeton University Press, 1986. Zbl0604.22001
  6. [6] KOBAYASHI (T.). — Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds, in Lecture Notes of the European School on Group theory, Perspectives in Math., Algebraic and Analytic methods in Representation theory, ed. B. Ørsted and H. Schlichtkrull, t. 17, 1996, p. 99-165. Zbl0899.43005MR97g:53061
  7. [7] LI (J-S.). — The minimal decay of matrix coefficients for classical groups, Math. Appl. (Harmonic Analysis in China), t. 327, 1996, p. 146-169. Zbl0844.22021MR98d:22009
  8. [8] LI (J-S.), ZHU (C-B.). — On the decay of matrix coefficients for exceptional groups, Math. Ann., t. 305, 1996, p. 249-270. Zbl0854.22023MR97f:22029
  9. [9] LIPSMAN (R.L.), WOLF (J.A.). — Canonical semi-invariants and the Plancherel formula for parabolic groups, Trans. AMS, t. 269, 1982, p. 111-131. Zbl0488.22024MR83k:22026
  10. [10] MARGULIS (G.A.). — Existence of compact quotients of homogeneous spaces, measurably proper actions and decay of matrix coefficients, Bull. Soc. Math. France, t. 125, 1997, p. 447-456. Zbl0892.22009MR99c:22015
  11. [11] ONISHCHIK (A.), VINBERG (E.). — Lie groups and Lie algebras III. — Springer-Verlag, 1993. 
  12. [12] ZIMMER (R.). — Ergodic theory and semisimple groups. — Birkhäuser, Boston, 1985. Zbl0571.58015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.