Tempered subgroups and representations with minimal decay of matrix coefficients
Bulletin de la Société Mathématique de France (1998)
- Volume: 126, Issue: 3, page 355-380
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [1] BOREL (A.), TITS (J.). — Groupes réductifs, Publ. Math. IHES, 27, 1965, p. 55-151. Zbl0145.17402MR34 #7527
- [2] BOURBAKI (N.). — Groupes et Algèbres de Lie, Chap. IV-VI. — Hermann, Paris, 1968. Zbl0483.22001
- [3] HOWE (R.E.). — On a notion of rank for unitary representations of the classical groups, Harmonic analysis and group representations II Circlo, Palazzone della Scuola normale superiore, CIME, 1980, p. 223-331. MR86j:22016
- [4] HOWE (R.E.), TAN (E.C.). — Non-Abelian Harmonic Analysis. — Springer-Verlag, 1992. Zbl0768.43001MR93f:22009
- [5] KNAPP (A.W.). — Representation theory of Semisimple groups - An overview based on examples. — Princeton University Press, 1986. Zbl0604.22001
- [6] KOBAYASHI (T.). — Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds, in Lecture Notes of the European School on Group theory, Perspectives in Math., Algebraic and Analytic methods in Representation theory, ed. B. Ørsted and H. Schlichtkrull, t. 17, 1996, p. 99-165. Zbl0899.43005MR97g:53061
- [7] LI (J-S.). — The minimal decay of matrix coefficients for classical groups, Math. Appl. (Harmonic Analysis in China), t. 327, 1996, p. 146-169. Zbl0844.22021MR98d:22009
- [8] LI (J-S.), ZHU (C-B.). — On the decay of matrix coefficients for exceptional groups, Math. Ann., t. 305, 1996, p. 249-270. Zbl0854.22023MR97f:22029
- [9] LIPSMAN (R.L.), WOLF (J.A.). — Canonical semi-invariants and the Plancherel formula for parabolic groups, Trans. AMS, t. 269, 1982, p. 111-131. Zbl0488.22024MR83k:22026
- [10] MARGULIS (G.A.). — Existence of compact quotients of homogeneous spaces, measurably proper actions and decay of matrix coefficients, Bull. Soc. Math. France, t. 125, 1997, p. 447-456. Zbl0892.22009MR99c:22015
- [11] ONISHCHIK (A.), VINBERG (E.). — Lie groups and Lie algebras III. — Springer-Verlag, 1993.
- [12] ZIMMER (R.). — Ergodic theory and semisimple groups. — Birkhäuser, Boston, 1985. Zbl0571.58015