Théorèmes de Lefschetz pour les lieux de dégénérescence
Bulletin de la Société Mathématique de France (2000)
- Volume: 128, Issue: 2, page 283-308
- ISSN: 0037-9484
Access Full Article
topHow to cite
topDebarre, Olivier. "Théorèmes de Lefschetz pour les lieux de dégénérescence." Bulletin de la Société Mathématique de France 128.2 (2000): 283-308. <http://eudml.org/doc/87829>.
@article{Debarre2000,
author = {Debarre, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lefschetz theorem; Bertini theorem; ample vector bundle; Prym varieties; degeneracy locus; Brill-Noether locus; isotropic grassmannians},
language = {fre},
number = {2},
pages = {283-308},
publisher = {Société mathématique de France},
title = {Théorèmes de Lefschetz pour les lieux de dégénérescence},
url = {http://eudml.org/doc/87829},
volume = {128},
year = {2000},
}
TY - JOUR
AU - Debarre, Olivier
TI - Théorèmes de Lefschetz pour les lieux de dégénérescence
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 283
EP - 308
LA - fre
KW - Lefschetz theorem; Bertini theorem; ample vector bundle; Prym varieties; degeneracy locus; Brill-Noether locus; isotropic grassmannians
UR - http://eudml.org/doc/87829
ER -
References
top- [ACGH] ARBARELLO (E.), CORNALBA (M.), GRIFFITHS (P.), HARRIS (J.). — Geometry of algebraic curves, I. — Grundlehren 267, Springer-Verlag, New York, 1985. Zbl0559.14017MR86h:14019
- [B] BERTRAM (A.). — An existence theorem for Prym special divisors, Invent. Math., t. 90, 1987, p. 669-671. Zbl0646.14006MR88k:14016
- [De] DELIGNE (P.). — Théorie de Hodge, III, Publ. Math. I.H.E.S., t. 44, 1974, p. 5-77. Zbl0237.14003MR58 #16653b
- [dB] DU BOIS (Ph.). — Complexe de de Rham filtré d'une variété singulière, Bull. Soc. Math. France, t. 109, 1981, p. 41-81. Zbl0465.14009MR82j:14006
- [EG] EDIDIN (D.), GRAHAM (W.). — Characteristic Classes and Quadric Bundles, Duke Math. J., t. 78, 1995, p. 277-299. Zbl0932.14003MR98a:14004
- [E] EIN (L.). — An Analogue of Max Noether's Theorem, Duke Math. J., t. 52, 1985, p. 689-706. Zbl0589.14034MR87e:14029
- [EP] ELLINGSRUD (G.), PESKINE (C.). — Équivalence numérique pour les surfaces génériques d'une famille lisse de surfaces projectives, in Problems in the theory of surfaces and their classification (Cortona, 1988), p. 99-109, Sympos. Math., XXXII. — Academic Press, London, 1991. Zbl0838.14004
- [F1] FULTON (W.). — Intersection theory. — Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer Verlag, Berlin, 1984. Zbl0541.14005MR85k:14004
- [F2] FULTON (W.). — Schubert varieties in flag bundles for the classical groups, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), p. 241-262. — Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996. Zbl0862.14032
- [FL] FULTON (W.), LAZARSFELD (R.). — On the connectedness of degeneracy loci and special divisors, Acta Math., t. 146, 1981, p. 271-283. Zbl0469.14018MR82k:14016
- [G1] GROTHENDIECK (A.). — Techniques de descente et théorèmes d'existence en géométrie algébrique, VI. Les schémas de Picard : propriétés générales, Séminaire Bourbaki, exp. 236, 1961/1962. Zbl0238.14015
- [G2] GROTHENDIECK (A.). — Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2). — Masson et North Holland, Paris Amsterdam, 1968. Zbl0197.47202MR57 #16294
- [H1] HAMM (H.). — Lefschetz theorems for singular varieties, in Singularities, Part 1 (Arcata, Calif., 1981), p. 547-557. — Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, R.I., 1983. Zbl0525.14011
- [H2] HAMM (H.). — Zur Homotopietyp Steinscher Räume, J. reine angew. Math., t. 338, 1983, p. 121-135. Zbl0491.32010MR84i:32021
- [Ha] HARRIS (J.). — Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc., t. 271, 1982, p. 611-638. Zbl0513.14025MR83m:14022
- [K] KOLLÁR (J.). — Shafarevich maps and automorphic forms. — M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995. Zbl0871.14015MR96i:14016
- [L] LAYTIMI (F.). — On Degeneracy Loci, Int. J. Math., t. 7, 1996, p. 745-754. Zbl0910.14003MR98a:14064
- [Lo] LÓPEZ (A.). — Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc., t. 89, 1991. Zbl0736.14012MR91f:14030
- [M] MACDONALD (I.). — Symmetric Products of an Algebraic Curve, Topology, t. 1, 1962, p. 319-343. Zbl0121.38003MR27 #1445
- [Ma] MANIVEL (L.). — Vanishing theorems for ample vector bundles, Invent. Math., t. 127, 1997, p. 401-416. Zbl0906.14011MR98e:14016
- [Mu] MUMFORD (D.). — Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup., t. 4, 1971, p. 181-192. Zbl0216.05904MR45 #1918
- [P1] PRAGACZ (P.). — Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, Banach Center Publications, t. 26 (2), 1990, p. 189-199. Zbl0743.14009MR93h:14036
- [P2] PRAGACZ (P.). — Algebro-geometric applications of Schur S — and Q-polynomials, in Topics in invariant theory (Paris, 1989/1990), Lecture Notes in Math., t. 1478, Springer, Berlin, 1991, p. 130-191. Zbl0783.14031MR93h:05170
- [PR1] PRAGACZ (P.), RATAJSKI (J.). — A Pieri-type theorem for Lagrangian and odd Orthogonal Grassmannians, J. reine angew. Math., t. 476, 1996, p. 143-189. Zbl0847.14029MR97i:14032
- [PR2] PRAGACZ (P.), RATAJSKI (J.). — Formulas for Lagrangian and orthogonal degeneracy loci ; Q-polynomial approach, Comp. Math., t. 107, 1997, p. 11-87. Zbl0916.14026MR98g:14063
- [RX] ROSSELLÓ LOMPART (F.), XAMBÓ DESCAMPS (S.). — Computing Chow Groups, in Algebraic Geometry (Sundance, UT, 1986), A. Holme, R. Speiser ed., Lecture Notes in Math., t. 1311, Springer, Berlin-New York, 1988, p. 220-234. Zbl0663.14001
- [S] SPANDAW (J.). — Noether-Lefschetz Theorems for Degeneracy Loci. — Habilitationsschrift, Hannover, 2000. Zbl1038.14003
- [St] STEFFEN (F.). — Eine Verallgemeinerung des Krullschen Hauptidealsatzes mit einer Anwendung auf die Brill-Noether-Theorie. — Dissertation, Bochum, 1996.
- [T] TU (L.). — The Connectedness of Symmetric and Skew-Symmetric Degeneracy Loci : Even Ranks, Trans. Amer. Math. Soc., t. 313, 1989, p. 381-392. Zbl0689.14024MR89i:14043
- [W] WELTERS (G.). — A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci. École Norm. Sup., t. 18, 1985, p. 671-683. Zbl0628.14036MR88a:14034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.