Théorèmes de Lefschetz pour les lieux de dégénérescence

Olivier Debarre

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 2, page 283-308
  • ISSN: 0037-9484

How to cite

top

Debarre, Olivier. "Théorèmes de Lefschetz pour les lieux de dégénérescence." Bulletin de la Société Mathématique de France 128.2 (2000): 283-308. <http://eudml.org/doc/87829>.

@article{Debarre2000,
author = {Debarre, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lefschetz theorem; Bertini theorem; ample vector bundle; Prym varieties; degeneracy locus; Brill-Noether locus; isotropic grassmannians},
language = {fre},
number = {2},
pages = {283-308},
publisher = {Société mathématique de France},
title = {Théorèmes de Lefschetz pour les lieux de dégénérescence},
url = {http://eudml.org/doc/87829},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Debarre, Olivier
TI - Théorèmes de Lefschetz pour les lieux de dégénérescence
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 283
EP - 308
LA - fre
KW - Lefschetz theorem; Bertini theorem; ample vector bundle; Prym varieties; degeneracy locus; Brill-Noether locus; isotropic grassmannians
UR - http://eudml.org/doc/87829
ER -

References

top
  1. [ACGH] ARBARELLO (E.), CORNALBA (M.), GRIFFITHS (P.), HARRIS (J.). — Geometry of algebraic curves, I. — Grundlehren 267, Springer-Verlag, New York, 1985. Zbl0559.14017MR86h:14019
  2. [B] BERTRAM (A.). — An existence theorem for Prym special divisors, Invent. Math., t. 90, 1987, p. 669-671. Zbl0646.14006MR88k:14016
  3. [De] DELIGNE (P.). — Théorie de Hodge, III, Publ. Math. I.H.E.S., t. 44, 1974, p. 5-77. Zbl0237.14003MR58 #16653b
  4. [dB] DU BOIS (Ph.). — Complexe de de Rham filtré d'une variété singulière, Bull. Soc. Math. France, t. 109, 1981, p. 41-81. Zbl0465.14009MR82j:14006
  5. [EG] EDIDIN (D.), GRAHAM (W.). — Characteristic Classes and Quadric Bundles, Duke Math. J., t. 78, 1995, p. 277-299. Zbl0932.14003MR98a:14004
  6. [E] EIN (L.). — An Analogue of Max Noether's Theorem, Duke Math. J., t. 52, 1985, p. 689-706. Zbl0589.14034MR87e:14029
  7. [EP] ELLINGSRUD (G.), PESKINE (C.). — Équivalence numérique pour les surfaces génériques d'une famille lisse de surfaces projectives, in Problems in the theory of surfaces and their classification (Cortona, 1988), p. 99-109, Sympos. Math., XXXII. — Academic Press, London, 1991. Zbl0838.14004
  8. [F1] FULTON (W.). — Intersection theory. — Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer Verlag, Berlin, 1984. Zbl0541.14005MR85k:14004
  9. [F2] FULTON (W.). — Schubert varieties in flag bundles for the classical groups, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), p. 241-262. — Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996. Zbl0862.14032
  10. [FL] FULTON (W.), LAZARSFELD (R.). — On the connectedness of degeneracy loci and special divisors, Acta Math., t. 146, 1981, p. 271-283. Zbl0469.14018MR82k:14016
  11. [G1] GROTHENDIECK (A.). — Techniques de descente et théorèmes d'existence en géométrie algébrique, VI. Les schémas de Picard : propriétés générales, Séminaire Bourbaki, exp. 236, 1961/1962. Zbl0238.14015
  12. [G2] GROTHENDIECK (A.). — Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2). — Masson et North Holland, Paris Amsterdam, 1968. Zbl0197.47202MR57 #16294
  13. [H1] HAMM (H.). — Lefschetz theorems for singular varieties, in Singularities, Part 1 (Arcata, Calif., 1981), p. 547-557. — Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, R.I., 1983. Zbl0525.14011
  14. [H2] HAMM (H.). — Zur Homotopietyp Steinscher Räume, J. reine angew. Math., t. 338, 1983, p. 121-135. Zbl0491.32010MR84i:32021
  15. [Ha] HARRIS (J.). — Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc., t. 271, 1982, p. 611-638. Zbl0513.14025MR83m:14022
  16. [K] KOLLÁR (J.). — Shafarevich maps and automorphic forms. — M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995. Zbl0871.14015MR96i:14016
  17. [L] LAYTIMI (F.). — On Degeneracy Loci, Int. J. Math., t. 7, 1996, p. 745-754. Zbl0910.14003MR98a:14064
  18. [Lo] LÓPEZ (A.). — Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc., t. 89, 1991. Zbl0736.14012MR91f:14030
  19. [M] MACDONALD (I.). — Symmetric Products of an Algebraic Curve, Topology, t. 1, 1962, p. 319-343. Zbl0121.38003MR27 #1445
  20. [Ma] MANIVEL (L.). — Vanishing theorems for ample vector bundles, Invent. Math., t. 127, 1997, p. 401-416. Zbl0906.14011MR98e:14016
  21. [Mu] MUMFORD (D.). — Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup., t. 4, 1971, p. 181-192. Zbl0216.05904MR45 #1918
  22. [P1] PRAGACZ (P.). — Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, Banach Center Publications, t. 26 (2), 1990, p. 189-199. Zbl0743.14009MR93h:14036
  23. [P2] PRAGACZ (P.). — Algebro-geometric applications of Schur S — and Q-polynomials, in Topics in invariant theory (Paris, 1989/1990), Lecture Notes in Math., t. 1478, Springer, Berlin, 1991, p. 130-191. Zbl0783.14031MR93h:05170
  24. [PR1] PRAGACZ (P.), RATAJSKI (J.). — A Pieri-type theorem for Lagrangian and odd Orthogonal Grassmannians, J. reine angew. Math., t. 476, 1996, p. 143-189. Zbl0847.14029MR97i:14032
  25. [PR2] PRAGACZ (P.), RATAJSKI (J.). — Formulas for Lagrangian and orthogonal degeneracy loci ; Q-polynomial approach, Comp. Math., t. 107, 1997, p. 11-87. Zbl0916.14026MR98g:14063
  26. [RX] ROSSELLÓ LOMPART (F.), XAMBÓ DESCAMPS (S.). — Computing Chow Groups, in Algebraic Geometry (Sundance, UT, 1986), A. Holme, R. Speiser ed., Lecture Notes in Math., t. 1311, Springer, Berlin-New York, 1988, p. 220-234. Zbl0663.14001
  27. [S] SPANDAW (J.). — Noether-Lefschetz Theorems for Degeneracy Loci. — Habilitationsschrift, Hannover, 2000. Zbl1038.14003
  28. [St] STEFFEN (F.). — Eine Verallgemeinerung des Krullschen Hauptidealsatzes mit einer Anwendung auf die Brill-Noether-Theorie. — Dissertation, Bochum, 1996. 
  29. [T] TU (L.). — The Connectedness of Symmetric and Skew-Symmetric Degeneracy Loci : Even Ranks, Trans. Amer. Math. Soc., t. 313, 1989, p. 381-392. Zbl0689.14024MR89i:14043
  30. [W] WELTERS (G.). — A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci. École Norm. Sup., t. 18, 1985, p. 671-683. Zbl0628.14036MR88a:14034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.