Sur des variétés toriques non projectives
Bulletin de la Société Mathématique de France (2000)
- Volume: 128, Issue: 3, page 407-431
- ISSN: 0037-9484
Access Full Article
topHow to cite
topBonavero, Laurent. "Sur des variétés toriques non projectives." Bulletin de la Société Mathématique de France 128.3 (2000): 407-431. <http://eudml.org/doc/87833>.
@article{Bonavero2000,
author = {Bonavero, Laurent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {toric variety; non projective variety; Mori theory; blow up},
language = {fre},
number = {3},
pages = {407-431},
publisher = {Société mathématique de France},
title = {Sur des variétés toriques non projectives},
url = {http://eudml.org/doc/87833},
volume = {128},
year = {2000},
}
TY - JOUR
AU - Bonavero, Laurent
TI - Sur des variétés toriques non projectives
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 3
SP - 407
EP - 431
LA - fre
KW - toric variety; non projective variety; Mori theory; blow up
UR - http://eudml.org/doc/87833
ER -
References
top- [Bat82] BATYREV (V.V.). — Toroidal Fano 3-folds, Math. USSR, Izv., t. 19, 1982, p. 13-25. Zbl0495.14027
- [Bon95] BONAVERO (L.). — Inégalités de Morse et variétés de Moishezon, Thèse, Université Joseph Fourier, 1995.
- [Bon96] BONAVERO (L.). — Sur des variétés de Moishezon dont le groupe de Picard est de rang un, Bull. Soc. Math. France, t. 124, n° 3, 1996, p. 503-521. Zbl0866.32014MR98a:14056
- [Ewa86] EWALD (G.). — Spherical complexes and nonprojective toric varieties, Discrete Comput. Geom., t. 1, 1986, p. 115-122. Zbl0597.52009MR87i:52012
- [Ewa96] EWALD (G.). — Combinatorial convexity and algebraic geometry, Graduate Texts in Math., Springer, t. 168, 1996. Zbl0869.52001MR97i:52012
- [Ful93] FULTON (W.). — Introduction to toric varieties., Annals of Math. Studies, Princeton University Press, t. 131, 1993. Zbl0813.14039MR94g:14028
- [Kle66] KLEIMAN (S.L.). — Toward a numerical theory of ampleness, Ann. Math., t. 2, ser. 84, 1966, p. 293-344. Zbl0146.17001MR34 #5834
- [Kle88] KLEINSCHMIDT (P.). — A classification of toric varieties with few generators, Aequationes Math., t. 35, n° 2/3, 1988, p. 254-266. Zbl0664.14018MR89f:14056
- [KSt91] KLEINSCHMIDT (P.), STURMFELS (B.). — Smooth toric varieties with small Picard number are projective, Topology, t. 30, n° 2, 1991, p. 289-299. Zbl0739.14032MR92a:14030
- [Kol91] KOLLÁR (J.). — Flips, flops, minimal models, Surveys Diff. Geom., t. 1, 1991, p. 113-199. Zbl0755.14003MR93b:14059
- [Mar82] MARUYAMA (M.). — Elementary transformations in the theory of algebraic vector bundles, Algebraic geometry, Proc. International Conference, La Rabida/Spain 1981, Lect. Notes Math., t. 961, 1982, p. 241-266. Zbl0505.14009MR85b:14020
- [Moi67] MOISHEZON (B.). — On n dimensional compact varieties with n independent meromorphic functions., Amer. Math. Soc. Transl., t. 63, 1967, p. 51-177. Zbl0186.26204
- [Mor96] MORELLI (R.). — The birational geometry of toric varieties, J. Algebr. Geom., t. 5, n° 4, 1996, p. 751-782. Zbl0871.14041MR99b:14056
- [Oda78] ODA (T.). — Lectures on torus embeddings and applications (based on joint work with Katsuya Miyake), Published for the Tata Institute of Fundamental Research, Bombay, Tata Institute of Fundamental Research Lectures on Mathematics an Physics, Mathematics, Springer-Verlag, t. 57, 1978. Zbl0417.14043MR81e:14001
- [Oda88] ODA (T.). — Convex bodies and algebraic geometry : an introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, t. 3, 015, 1988. Zbl0628.52002MR88m:14038
- [Rei83] REID (M.). — Decomposition of toric morphisms Arithmetic and geometry, dedicated to I.R. Shafarevich, vol. II, Geometry, Prog. Math., t. 36, 1983, p. 395-418. Zbl0571.14020MR85e:14071
- [WWa82] WATANABE (K.), WATANABE (M.). — The classification of Fano 3-folds with torus embeddings, Tokyo J. Math., t. 5, 1982, p. 37-48. Zbl0581.14028MR83m:14029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.