Sur des variétés toriques non projectives

Laurent Bonavero

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 3, page 407-431
  • ISSN: 0037-9484

How to cite

top

Bonavero, Laurent. "Sur des variétés toriques non projectives." Bulletin de la Société Mathématique de France 128.3 (2000): 407-431. <http://eudml.org/doc/87833>.

@article{Bonavero2000,
author = {Bonavero, Laurent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {toric variety; non projective variety; Mori theory; blow up},
language = {fre},
number = {3},
pages = {407-431},
publisher = {Société mathématique de France},
title = {Sur des variétés toriques non projectives},
url = {http://eudml.org/doc/87833},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Bonavero, Laurent
TI - Sur des variétés toriques non projectives
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 3
SP - 407
EP - 431
LA - fre
KW - toric variety; non projective variety; Mori theory; blow up
UR - http://eudml.org/doc/87833
ER -

References

top
  1. [Bat82] BATYREV (V.V.). — Toroidal Fano 3-folds, Math. USSR, Izv., t. 19, 1982, p. 13-25. Zbl0495.14027
  2. [Bon95] BONAVERO (L.). — Inégalités de Morse et variétés de Moishezon, Thèse, Université Joseph Fourier, 1995. 
  3. [Bon96] BONAVERO (L.). — Sur des variétés de Moishezon dont le groupe de Picard est de rang un, Bull. Soc. Math. France, t. 124, n° 3, 1996, p. 503-521. Zbl0866.32014MR98a:14056
  4. [Ewa86] EWALD (G.). — Spherical complexes and nonprojective toric varieties, Discrete Comput. Geom., t. 1, 1986, p. 115-122. Zbl0597.52009MR87i:52012
  5. [Ewa96] EWALD (G.). — Combinatorial convexity and algebraic geometry, Graduate Texts in Math., Springer, t. 168, 1996. Zbl0869.52001MR97i:52012
  6. [Ful93] FULTON (W.). — Introduction to toric varieties., Annals of Math. Studies, Princeton University Press, t. 131, 1993. Zbl0813.14039MR94g:14028
  7. [Kle66] KLEIMAN (S.L.). — Toward a numerical theory of ampleness, Ann. Math., t. 2, ser. 84, 1966, p. 293-344. Zbl0146.17001MR34 #5834
  8. [Kle88] KLEINSCHMIDT (P.). — A classification of toric varieties with few generators, Aequationes Math., t. 35, n° 2/3, 1988, p. 254-266. Zbl0664.14018MR89f:14056
  9. [KSt91] KLEINSCHMIDT (P.), STURMFELS (B.). — Smooth toric varieties with small Picard number are projective, Topology, t. 30, n° 2, 1991, p. 289-299. Zbl0739.14032MR92a:14030
  10. [Kol91] KOLLÁR (J.). — Flips, flops, minimal models, Surveys Diff. Geom., t. 1, 1991, p. 113-199. Zbl0755.14003MR93b:14059
  11. [Mar82] MARUYAMA (M.). — Elementary transformations in the theory of algebraic vector bundles, Algebraic geometry, Proc. International Conference, La Rabida/Spain 1981, Lect. Notes Math., t. 961, 1982, p. 241-266. Zbl0505.14009MR85b:14020
  12. [Moi67] MOISHEZON (B.). — On n dimensional compact varieties with n independent meromorphic functions., Amer. Math. Soc. Transl., t. 63, 1967, p. 51-177. Zbl0186.26204
  13. [Mor96] MORELLI (R.). — The birational geometry of toric varieties, J. Algebr. Geom., t. 5, n° 4, 1996, p. 751-782. Zbl0871.14041MR99b:14056
  14. [Oda78] ODA (T.). — Lectures on torus embeddings and applications (based on joint work with Katsuya Miyake), Published for the Tata Institute of Fundamental Research, Bombay, Tata Institute of Fundamental Research Lectures on Mathematics an Physics, Mathematics, Springer-Verlag, t. 57, 1978. Zbl0417.14043MR81e:14001
  15. [Oda88] ODA (T.). — Convex bodies and algebraic geometry : an introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, t. 3, 015, 1988. Zbl0628.52002MR88m:14038
  16. [Rei83] REID (M.). — Decomposition of toric morphisms Arithmetic and geometry, dedicated to I.R. Shafarevich, vol. II, Geometry, Prog. Math., t. 36, 1983, p. 395-418. Zbl0571.14020MR85e:14071
  17. [WWa82] WATANABE (K.), WATANABE (M.). — The classification of Fano 3-folds with torus embeddings, Tokyo J. Math., t. 5, 1982, p. 37-48. Zbl0581.14028MR83m:14029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.