Sur des variétés de Moishezon dont le groupe de Picard est de rang un

Laurent Bonavero

Bulletin de la Société Mathématique de France (1996)

  • Volume: 124, Issue: 3, page 503-521
  • ISSN: 0037-9484

How to cite

top

Bonavero, Laurent. "Sur des variétés de Moishezon dont le groupe de Picard est de rang un." Bulletin de la Société Mathématique de France 124.3 (1996): 503-521. <http://eudml.org/doc/87748>.

@article{Bonavero1996,
author = {Bonavero, Laurent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Picard group; big canonical bundle; Moishezon manifolds; Mori theory},
language = {fre},
number = {3},
pages = {503-521},
publisher = {Société mathématique de France},
title = {Sur des variétés de Moishezon dont le groupe de Picard est de rang un},
url = {http://eudml.org/doc/87748},
volume = {124},
year = {1996},
}

TY - JOUR
AU - Bonavero, Laurent
TI - Sur des variétés de Moishezon dont le groupe de Picard est de rang un
JO - Bulletin de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 124
IS - 3
SP - 503
EP - 521
LA - fre
KW - Picard group; big canonical bundle; Moishezon manifolds; Mori theory
UR - http://eudml.org/doc/87748
ER -

References

top
  1. [And85] ANDO (T.). — On extremal rays of the higher dimensional varieties, Invent. Math., t. 81, 1985, p. 347-357. Zbl0554.14001MR87g:14045
  2. [BPV84] BARTH (W.), PETERS (C.) and VAN DE VEN (A.). — Compact complex surfaces. — Springer, 1984. Zbl0718.14023MR86c:32026
  3. [BVV78] BARTH (W.) and VAN DE VEN (A.). — Fano varieties of lines on hypersurfaces, Arch. Math., t. 31, 1978, p. 96-104. Zbl0383.14003MR80j:14004
  4. [Bel86] BELTRAMETTI (M.). — Contractions of non numerically effective extremal rays in dimension 4, Proc. Alg. Geom. Teubner, Texte Math., Berlin, Teubner, t. 92, 1986, p. 24-37. Zbl0619.14005MR89c:14064
  5. [Bo93a] BONAVERO (L.). — Inégalités de Morse holomorphes singulières, C.R. Acad. Sciences Paris, t. 317, série I, 1993, p. 1163-1166. Zbl0799.32023MR94i:32047
  6. [Bo93b] BONAVERO (L.). — Inégalités de Morse holomorphes singulières, Prépublication de l'Institut Fourier, t. 259, 1993, à paraître au Journal of Geometric Analysis. MR94i:32047
  7. [Bo95] BONAVERO (L.). — Inégalités de Morse et variétés de Moishezon, Thèse de Doctorat de l'Université J. Fourier (Grenoble 1), 1995. 
  8. [Bon95] BONAVERO (L.). — Sur des variétés de Moishezon dont le groupe de Picard est de rang un, C.R. Acad. Sciences Paris, t. 321, 1995, p. 443-446. Zbl0862.14022MR96g:32046
  9. [Cle83] CLEMENS (H.). — Homological equivalence, modulo algebraic equivalence, is not finitely generated, Inst. Haute Études Scient., t. 58, 1983, p. 19-38. Zbl0529.14002MR86d:14043
  10. [CKM88] CLEMENS (H.), KOLLÁR (J.) and MORI (S.). — Higher dimensional complex geometry, Astérisque, t. 166, 1988. Zbl0689.14016MR90j:14046
  11. [Dem85] DEMAILLY (J.-P.). — Champs magnétiques et inégalités de Morse pour la d″ cohomologie, Ann. Inst. Fourier, t. 35, 1985, p. 189-229. Zbl0565.58017MR87d:58147
  12. [JiS93] JI (S.) and SHIFFMAN (B.). — Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal., t. 3, n° 1, 1993, p. 37-61. Zbl0784.32009MR93m:32014
  13. [Kat86] KATZ (S.). — On the finiteness of rational curves on quintic threefolds, Comp. Math., t. 60, 1986, p. 151-162. Zbl0606.14039MR88a:14047
  14. [Kaw89] KAWAMATA (Y.). — Small contractions of four dimendional algebraic manifolds, Math. Ann., t. 284, 1989, p. 595-600. Zbl0661.14009MR91e:14039
  15. [KMM87] KAWAMATA (Y.), MATSUDA (K.) and MATSUKI (K.). — Introduction to the minimal model problem, Adv. Studies in Math., t. 10, 1987, p. 283-360. Zbl0672.14006MR89e:14015
  16. [KoO73] KOBAYASHI (S.) and OCHIAI (T.). — Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., t. 13, 1973, p. 31-47. Zbl0261.32013MR47 #5293
  17. [Kol91] KOLLÁR (J.). — Flips, flops, minimal models, Surveys in Diff. Geom., t. 1, 1991, p. 113-199. Zbl0755.14003MR93b:14059
  18. [Laz84] LAZARSFELD (R.). — Some applications of the theory of positive bundles, Complete intersections (ed. S. Greco, R. Strano), Springer Lecture Notes, t. 1092, 1984, p. 29-61. Zbl0547.14009MR86d:14013
  19. [Moi67] MOISHEZON (B.). — On n dimensional compact varieties with n independent meromorphic functions, Amer. Math. Soc. Translations, t. 63, 1967, p. 51-177. Zbl0186.26204
  20. [Mor82] MORI (S.). — Threefolds whose canonical bundles are not numerically effective, Ann. of Math., t. 116, 1982, p. 133-176. Zbl0557.14021MR84e:14032
  21. [Ogu94] OGUISO (K.). — Two remarks on Calabi-Yau Moishezon threefolds, J. Reine angew. Math., t. 452, 1994, p. 153-161. Zbl0792.14022MR95f:32032
  22. [Pet91] PETERNELL (T.). — Ample vector bundles on Fano manifolds, Int. J. Math., t. 2, n° 3, 1991, p. 311-322. Zbl0744.14009MR92c:14038
  23. [Siu84] SIU (Y.-T.). — A vanishing theorem for semi-positive line bundles over non-Kähler manifolds, J. Diff. Geom., t. 19, 1984, p. 431-452. Zbl0577.32031MR86c:32029
  24. [Siu85] SIU (Y.-T.). — Some recent results in complex manifolds theory related to vanishing theorems for the semi-positive case, Lecture Note in Math., t. 1111, Springer-Verlag, Berlin, New York, 1985, p. 169-192. Zbl0577.32032MR87b:32055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.