Diophantine approximation and deformation

Minhyoung Kim; Dinesh S. Thakur; José Felipe Voloch

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 4, page 585-598
  • ISSN: 0037-9484

How to cite


Kim, Minhyoung, Thakur, Dinesh S., and Voloch, José Felipe. "Diophantine approximation and deformation." Bulletin de la Société Mathématique de France 128.4 (2000): 585-598. <http://eudml.org/doc/87841>.

author = {Kim, Minhyoung, Thakur, Dinesh S., Voloch, José Felipe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {deformation; positive characteristic; Kodaira-Spencer map; Riccati condition; height inequalities for algebraic points},
language = {eng},
number = {4},
pages = {585-598},
publisher = {Société mathématique de France},
title = {Diophantine approximation and deformation},
url = {http://eudml.org/doc/87841},
volume = {128},
year = {2000},

AU - Kim, Minhyoung
AU - Thakur, Dinesh S.
AU - Voloch, José Felipe
TI - Diophantine approximation and deformation
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 4
SP - 585
EP - 598
LA - eng
KW - deformation; positive characteristic; Kodaira-Spencer map; Riccati condition; height inequalities for algebraic points
UR - http://eudml.org/doc/87841
ER -


  1. [BS] BAUM (L.), SWEET (M.). — Continued fractions of algebraic power series in characteristic 2, Ann. of Math., t. 103, 1976, p. 593-610. Zbl0312.10024MR53 #13127
  2. [K] KIM (M.). — Geometric height inequalities and the Kodaira-Spencer map, Compositio Math., t. 105, 1997, p. 43-54. Zbl0871.14020MR98j:14029
  3. [LdM1] LASJAUNIAS (A.), DE MATHAN (B.). — Thue's theorem in positive characteristic, J. reine angew. Math., t. 473, 1996, p. 195-206. Zbl0844.11046MR97c:11076
  4. [LdM2] LASJAUNIAS (A.), DE MATHAN (B.). — Differential equations and Diophantine approximation in positive characteristic, Monatshefte Math., t. 128, 1999, p. 1-6. Zbl0953.11024MR2000f:11091
  5. [M] MAHLER (K.). — On a theorem of Liouville in fields of positive characteristic, Can. J. Math., t. 1, 1949, p. 397-400. Zbl0033.35203MR11,159e
  6. [O1] OSGOOD (C.). — An effective lower bound on the diophantine approximation of algebraic functions by rational functions, Mathematika, t. 20, 1973, p. 4-15. Zbl0269.10017MR50 #7050
  7. [O2] OSGOOD (C.). — Effective bounds on the diophantine approximation of algebraic functions over fields of arbitrary characteristic and applications to differential equations, Indag. Math., t. 37, 1975, p. 104-119. Zbl0302.10034MR52 #8048a
  8. [Sc1] SCHMIDT (W.). — On Osgood's effective Thue theorem for algebraic functions, Comm. Pure Applied Math., t. 29, 1976, p. 759-773. Zbl0333.10019MR54 #7393
  9. [Sc2] SCHMIDT (W.). — On continued fractions and diophantine approximation in power series fields, to appear in Acta Arithmetica. Zbl0987.11041
  10. [Sc3] SCHMIDT (W.). — Diophantine approximation, Lecture Notes in Math., t. 785, Springer, Berlin, 1980. Zbl0421.10019MR81j:10038
  11. [T] THAKUR (D.). — Diophantine approximation exponents and continued fractions for algebraic power series, J. Number Theory, t. 79, 1999, p. 284-291. Zbl0966.11029MR2000j:11104
  12. [V1] VOLOCH (J.F.). — Diophantine approximation in positive characteristic, Periodica Math. Hungarica, t. 19, 1988, p. 217-225. Zbl0661.10050MR89h:11045
  13. [V2] VOLOCH (J.F.). — Diophantine approximation in characteristic p, Monatsh. Math., t. 119, 1995, p. 321-325. Zbl0827.11039MR96b:11099
  14. [V3] VOLOCH (J.F.). — Diophantine geometry in characteristic p : a survey, in Arithmetic Geometry, F. Catanese, ed., Symposia Mathematica, Cambridge Univ. Press, t. XXXVII, 1997, p. 260-278. Zbl0905.14011MR99c:11081
  15. [Voj1] VOJTA (P.). — Diophantine approximations and value distribution theory, Lecture Notes in Math., Springer, Berlin, t. 1239, 1987. Zbl0609.14011MR91k:11049
  16. [Voj2] VOJTA (P.). — On algebraic points on curves, Comp. Math., t. 78, 1991, p. 29-36. Zbl0731.14015MR93b:11080

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.