Continuity of local times for Markov processes
Compositio Mathematica (1972)
- Volume: 24, Issue: 3, page 277-303
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGetoor, R. K., and Kesten, H.. "Continuity of local times for Markov processes." Compositio Mathematica 24.3 (1972): 277-303. <http://eudml.org/doc/89122>.
@article{Getoor1972,
author = {Getoor, R. K., Kesten, H.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {277-303},
publisher = {Wolters-Noordhoff Publishing},
title = {Continuity of local times for Markov processes},
url = {http://eudml.org/doc/89122},
volume = {24},
year = {1972},
}
TY - JOUR
AU - Getoor, R. K.
AU - Kesten, H.
TI - Continuity of local times for Markov processes
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 24
IS - 3
SP - 277
EP - 303
LA - eng
UR - http://eudml.org/doc/89122
ER -
References
top- S.M. Berman [1] Gaussian processes with stationary increments: local times and sample function properties, Ann. Math. Stat.41 (1970) 1260-1272. Zbl0204.50501MR272035
- R.M. Blumenthal And R.K. Getoor [2] Local times for Markov processes, Z. Wahrscheinlichkeitstheorie verw. Geb.3 (1964) 50-74. Zbl0126.33701MR165569
- R.M. Blumenthal And R.K. Getoor [3] Markov processes and potential theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
- E.S. Boylan [4] Local times for a class of Markov processes, Ill. J. Math.8 (1964) 19-39. Zbl0126.33702MR158434
- L. Breiman [5] Probability, Addison-Wesley Publ. Co., Reading, Mass., 1968. Zbl0174.48801MR229267
- J. Bretagnolle [6 ] Résultats de Kesten sur les processus à accroissements indépendants. Lecture Notes in Mathematics, Vol. 191, Springer-Verlag, Berlin (1971) 21-36. MR368175
- K.L. Chung [7] A course in probability theory, Harcourt, Brace & World, Inc.New York, 1968. Zbl0159.45701MR229268
- L.E. Dubins And D.A. Freedman [8] A sharper form of the Borel-Cantelli lemma and the strong law, Ann. Math. Stat.36 (1965) 800-807. Zbl0168.16901MR182041
- A.M. Garsia, E. Rodemich AND H. Rumsey, JR. [9] A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math J.20 (1970) 565-578. Zbl0252.60020MR267632
- A.M. Garsia [10] Continuity properties of multi-dimensional Gaussian processes, 6th Berkeley Symposium on Math. Stat. and Prob., p. 000, Berkeley1970. Zbl0272.60034
- R.K. Getoor [11] Continuous additive functionals of a Markov process with applications to processes with independent increments, J. Math. Anal. Appl.13 (1966) 132-153. Zbl0138.40901MR185663
- K. Ito And H.P. McKean, Jr. [12] Diffusion processes and their sample paths, Springer-Verlag, Berlin, 1965. Zbl0127.09503
- H. Kesten [13] Hitting probabilities of single points for processes with stationary independent increments, Memoir 93, Am. Math. Soc., 1969. Zbl0186.50202MR272059
- P.A. Meyer [14] Sur les lois de certaines functionelles additives; Applications aux temps locaux, Publ. Inst. Stat. Univ. Paris15 (1966) 295-310. Zbl0144.40102MR208679
- P.A. Meyer [15] Processus de Markov, Lecture Notes in Mathematics, vol. 26, Springer-Verlag, Berlin, 1967. Zbl0189.51403MR219136
- S.C. Port And C.J. Stone [16] The asymmetric Cauchy processes on the line, Ann. Math. Stat.40 (1969) 137-143. Zbl0211.21102MR235619
- S.C. Port And C.J. Stone [17] Infinitely divisible processes and their potential theory, Ann. Inst. Fourier21 (1971) 157-257. Zbl0195.47601MR346919
- C. Stone [18] The set of zeros of a semistable process, Ill. J. Math.7 (1963) 631-637. Zbl0121.12906MR158439
- H.F. Trotter [19] A property of Brownian motion paths, Ill. J. Math.2 (1958) 425-433. Zbl0117.35502MR96311
Citations in EuDML Documents
top- Richard F. Bass, Davar Khoshnevisan, Stochastic calculus and the continuity of local times of Lévy processes
- Nadine Guillotin-Plantard, Véronique Ladret, Limit theorems for U-statistics indexed by a one dimensional random walk
- Nadine Guillotin-Plantard, Véronique Ladret, Limit theorems for U-statistics indexed by a one dimensional random walk
- Adriano Garsia, Eugène Rodemich, Monotonicity of certain functionals under rearrangement
- R. K. Getoor, P. W. Millar, Some limit theorems for local time
- P. J. Fitzsimmons, R. K. Getoor, Limit theorems and variation properties for fractional derivatives of the local time of a stable process
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.