Limit theorems and variation properties for fractional derivatives of the local time of a stable process

P. J. Fitzsimmons; R. K. Getoor

Annales de l'I.H.P. Probabilités et statistiques (1992)

  • Volume: 28, Issue: 2, page 311-333
  • ISSN: 0246-0203

How to cite

top

Fitzsimmons, P. J., and Getoor, R. K.. "Limit theorems and variation properties for fractional derivatives of the local time of a stable process." Annales de l'I.H.P. Probabilités et statistiques 28.2 (1992): 311-333. <http://eudml.org/doc/77434>.

@article{Fitzsimmons1992,
author = {Fitzsimmons, P. J., Getoor, R. K.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {occupation times; stable Markov processes; fractional derivatives; Hilbert transforms},
language = {eng},
number = {2},
pages = {311-333},
publisher = {Gauthier-Villars},
title = {Limit theorems and variation properties for fractional derivatives of the local time of a stable process},
url = {http://eudml.org/doc/77434},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Fitzsimmons, P. J.
AU - Getoor, R. K.
TI - Limit theorems and variation properties for fractional derivatives of the local time of a stable process
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1992
PB - Gauthier-Villars
VL - 28
IS - 2
SP - 311
EP - 333
LA - eng
KW - occupation times; stable Markov processes; fractional derivatives; Hilbert transforms
UR - http://eudml.org/doc/77434
ER -

References

top
  1. [B85] M.T. Barlow, Continuity of Local Times for Lévy Processes, Z. Wahrscheinlichkeitstheorie v. Geb., Vol. 69, 1985, pp. 23-35. Zbl0561.60076MR775850
  2. [Ba87] R.F. Bass, Lp Inequalities for Functionals of Brownian Motion, Sém. de Probabilités, XXI; Springer Lect. Notes Math., No. 1247, 1987, pp. 206-217. Zbl0616.60046MR941984
  3. [Be90] J. Bertoin, Complements on the Hilbert Transform and the Fractional Derivatives of Brownian Local Times, J. Math. Kyoto, Vol. 30, 1990, pp. 651-670. Zbl0725.60084MR1088348
  4. [BY87] Ph. Biane and M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sc. Math., 2nd Ser., Vol. 111, 1987, pp. 23-101. Zbl0619.60072MR886959
  5. [Bi71] N.H. Bingham, Limit Theorems for Occupation Times of Markov Processes, Z. Wahrsheinlichkeitstheorie v. Geb., Vol. 17, 1971, pp. 1-22. Zbl0194.49503MR281255
  6. [BGT87] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987. Zbl0617.26001MR898871
  7. [BG68] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
  8. [Bo64] E.S. Boylan, Local Times for a Class of Markoff Processes, Illinois J. Math., Vol. 8, 1964, pp. 19-39. Zbl0126.33702MR158434
  9. [DK57] D.A. Darling and M. Kac, On Occupation Times for Markoff Processes, Trans. Am. Math. Soc., Vol. 84, 1957, pp.444-458. Zbl0078.32005MR84222
  10. [Da87] B. Davis, On the Barlow-Yor Inequalities for Local Time, Sém. de Probabilités, XXI; Springer Lect. Notes Math., Vol. 1247, 1987, pp. 218-220. Zbl0617.60041MR941985
  11. [Du91] R. Durrett, Probability: Theory and Examples, Wadsworth and Brooks/Cole, Pacific Grove, 1991. Zbl0709.60002MR1068527
  12. [F80] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, 1980. Zbl0422.31007MR569058
  13. [FG91] P.J. Fitzsimmons and R.K. Getoor, On the Distribution of the Hilbert Transform of the Local Time of a Symmetric Lévy Process, Ann. Prob. (to appear). Zbl0767.60071MR1175273
  14. [G90] R.K. Getoor, Excessive Measures, Birkhäuser, Boston, 1990. Zbl0982.31500MR1093669
  15. [GK72] R.K. Getoor and H. Kesten, Continuity of Local Times for Markov Processes, Compositio Math., Vol. 24, 1872, pp. 277-303. Zbl0293.60069MR310977
  16. [HL28] G.H. Hardy and J.E. Littlewood, Some Properties of Fractional Integrals, I. Math. Zeit., Vol. 27, 1928, pp. 565-606. Zbl0003.15601MR1544927JFM54.0275.05
  17. [K77] Y. Kasahara, Limit Theorems of Occupation Times for Markov Processes. Publ. R.I.M.S. Kyoto Univ., Vol. 12, 1977, pp. 801-818. Zbl0367.60094MR448575
  18. [K81] Y. Kasahara, Two Limit Theorems for Occupation Times of Markov Processes, Jpn J. Math., Vol. 7, 1981, pp. 291-300. Zbl0483.60074MR729440
  19. [PY86] J. Pitman and M. Yor, Asymptotic Laws of Planar Brownian Motion, Ann. Prob., Vol. 14, 1986, pp. 773-779. Zbl0607.60070MR841582
  20. [R75] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1975. Zbl0332.60045MR415773
  21. [S70] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501MR290095
  22. [T48] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed., Clarendon Press, Oxford, 1948. 
  23. [T58] H.F. Trotter, A Property of Brownian Motion Paths, Illinois J. Math., Vol. 2, 1958, pp.425-433. Zbl0117.35502MR96311
  24. [Y85] T. Yamada, On the Fractional Derivative of Brownian Local Times, J. Math. Kyoto Univ., Vol. 25, 1985, pp. 49-58. Zbl0625.60090MR777245
  25. [Y86] T. Yamada, On Some Limit Theorems for Occupation Times of One Dimensional Brownian Motion and its Continuous Additive Functionals Locally of Zero Energy, J. Math. Kyoto Univ., Vol. 26, 1986, pp. 309-322. Zbl0618.60080MR849222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.