On infinite series representations of real numbers

János Galambos

Compositio Mathematica (1973)

  • Volume: 27, Issue: 2, page 197-204
  • ISSN: 0010-437X

How to cite

top

Galambos, János. "On infinite series representations of real numbers." Compositio Mathematica 27.2 (1973): 197-204. <http://eudml.org/doc/89188>.

@article{Galambos1973,
author = {Galambos, János},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {197-204},
publisher = {Noordhoff International Publishing},
title = {On infinite series representations of real numbers},
url = {http://eudml.org/doc/89188},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Galambos, János
TI - On infinite series representations of real numbers
JO - Compositio Mathematica
PY - 1973
PB - Noordhoff International Publishing
VL - 27
IS - 2
SP - 197
EP - 204
LA - eng
UR - http://eudml.org/doc/89188
ER -

References

top
  1. [1] J. Galambos: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. Quart. J. Math. Oxford Ser., 21 (1970) 177-191. Zbl0198.38104MR258777
  2. [2] J. Galambos: A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions. Amer. Math. Monthly, 78 (1971) 774-779. Zbl0238.10038MR313212
  3. [3] J. Galambos: On a model for a fair distribution of gifts. J. Appl. Probability, 8 (1971) 681-690. Zbl0227.60007MR293688
  4. [4] J. Galambos: Some remarks on the Lüroth expansion. Czechosl. Math. J., 22 (1972) 266-271. Zbl0238.10036MR302593
  5. [5] J. Galambos: Probabilistic theorems concerning expansions of real numbers. Periodica Math. Hungar., 3 (1973) 101-113. Zbl0247.10032MR337861
  6. [6] J. Galambos: Further ergodic results on the Oppenheim series. Quart. J. Math. Oxford Ser., 25 (1974) (to appear). Zbl0281.10028MR347759
  7. [7] H. Jager and C. De Vroedt: Lüroth series and their ergodic properties. Proc. Nederl. Akad. Wet, Ser. A, 72 (1969) 31-42. Zbl0167.32201MR238793
  8. [8] A. Oppenheim: Representations of real numbers by series of reciprocals of odd integers. Acta Arith., 18 (1971) 115-124. Zbl0237.10011MR299555
  9. [9] A. Oppenheim: The representation of real numbers by infinite series of rationals. Acta Arith., 21 (1972) 391-398. Zbl0258.10003MR309877
  10. [10] T. Salát: Zur metrische Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czechosl. Math. J., 18 (1968) 489-522. Zbl0162.34703MR229605
  11. [11] F. Schweiger: Metrische Sätze über Oppenheimentwicklungen. J. Reine Angew. Math., 254 (1972) 152-159. Zbl0234.10040MR297729
  12. [12] W. Vervaat: Success epochs in Bernoulli trials with applications in number theory. Math. Centre Tracts, Vol. 42, (1972) Amsterdam. Zbl0267.60003MR328989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.