On infinite series representations of real numbers
Compositio Mathematica (1973)
- Volume: 27, Issue: 2, page 197-204
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGalambos, János. "On infinite series representations of real numbers." Compositio Mathematica 27.2 (1973): 197-204. <http://eudml.org/doc/89188>.
@article{Galambos1973,
author = {Galambos, János},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {197-204},
publisher = {Noordhoff International Publishing},
title = {On infinite series representations of real numbers},
url = {http://eudml.org/doc/89188},
volume = {27},
year = {1973},
}
TY - JOUR
AU - Galambos, János
TI - On infinite series representations of real numbers
JO - Compositio Mathematica
PY - 1973
PB - Noordhoff International Publishing
VL - 27
IS - 2
SP - 197
EP - 204
LA - eng
UR - http://eudml.org/doc/89188
ER -
References
top- [1] J. Galambos: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. Quart. J. Math. Oxford Ser., 21 (1970) 177-191. Zbl0198.38104MR258777
- [2] J. Galambos: A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions. Amer. Math. Monthly, 78 (1971) 774-779. Zbl0238.10038MR313212
- [3] J. Galambos: On a model for a fair distribution of gifts. J. Appl. Probability, 8 (1971) 681-690. Zbl0227.60007MR293688
- [4] J. Galambos: Some remarks on the Lüroth expansion. Czechosl. Math. J., 22 (1972) 266-271. Zbl0238.10036MR302593
- [5] J. Galambos: Probabilistic theorems concerning expansions of real numbers. Periodica Math. Hungar., 3 (1973) 101-113. Zbl0247.10032MR337861
- [6] J. Galambos: Further ergodic results on the Oppenheim series. Quart. J. Math. Oxford Ser., 25 (1974) (to appear). Zbl0281.10028MR347759
- [7] H. Jager and C. De Vroedt: Lüroth series and their ergodic properties. Proc. Nederl. Akad. Wet, Ser. A, 72 (1969) 31-42. Zbl0167.32201MR238793
- [8] A. Oppenheim: Representations of real numbers by series of reciprocals of odd integers. Acta Arith., 18 (1971) 115-124. Zbl0237.10011MR299555
- [9] A. Oppenheim: The representation of real numbers by infinite series of rationals. Acta Arith., 21 (1972) 391-398. Zbl0258.10003MR309877
- [10] T. Salát: Zur metrische Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czechosl. Math. J., 18 (1968) 489-522. Zbl0162.34703MR229605
- [11] F. Schweiger: Metrische Sätze über Oppenheimentwicklungen. J. Reine Angew. Math., 254 (1972) 152-159. Zbl0234.10040MR297729
- [12] W. Vervaat: Success epochs in Bernoulli trials with applications in number theory. Math. Centre Tracts, Vol. 42, (1972) Amsterdam. Zbl0267.60003MR328989
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.